
Setting Performance Goals and Evaluating Total
Analytical Error for Diagnostic Assays

Jan S. Krouwer

Background: Total analytical error has been a useful
metric both to assess laboratory assay quality and to set
goals. It is often estimated by combining imprecision
(SD) and average bias in the equation: total analytical
error � bias � 1.65 � imprecision. This indirect estima-
tion model (referred to as the simple combination model)
leads to different estimates of total analytical error than
that of a direct estimation method (referred to as the
distribution-of-differences method) or of simulation.
Methods: A review of the literature was undertaken to
reconcile the different estimation approaches.
Results: The simple combination model can underesti-
mate total analytical error by neglecting random inter-
ference bias and by not properly treating other error
sources such as linear drift and outliers. A simulation
method to estimate total analytical error is outlined,
based on the estimation and combination of total ana-
lytical error source distributions. Goals for each total
analytical error source can be established by allocation
of the total analytical error goal. Typically, the alloca-
tion is cost-based and uses the probability of combina-
tions of error sources. The distribution-of-differences
method, simple combination model, and simulation
method to evaluate total analytical error are compared.
Outlier results can profoundly influence quality, but
their rates are seldom reported.
Conclusions: Total analytical error should be estimated
either directly by the distribution-of-differences method
or by simulation. A systems engineering approach that
uses allocation of the total analytical error goal into error
source goals provides a cost-effective approach to meet-
ing total analytical error. Because outliers can cause
serious laboratory error, the inclusion of outlier rate
estimates from large studies (e.g., those conducted by
manufacturers) would be helpful in assessing assay
quality.
© 2002 American Association for Clinical Chemistry

Performance goals for laboratory testing have been dis-
cussed for many years, with perhaps the best known
starting point being Tonks (1 ). A collection of ideas on
performance goal strategies has been published from a
recent conference (2 ). Many of these efforts to develop
goals have produced valuable insights in understanding
quality requirements for laboratory tests. For example,
Klee et al. (3 ) showed that lot-to-lot reagent bias, as one
error source, could adversely affect patient treatment.

Performance goals for laboratory testing have most
often been developed for total analytical error and for
imprecision (SD) and bias. A total analytical error goal
requires that the combination of errors from all sources is
within some acceptable limit. From a clinician’s stand-
point, this is the most useful goal, because an incorrect
laboratory result, regardless of which component(s) of
total analytical error has caused it, is harmful. A total
analytical error goal also enables a simple and cost-
effective assessment of the suitability of a particular assay
because there is only one error source to estimate.

On the other hand, manufacturers are interested in
total analytical error sources because knowledge of these
error sources and their subsequent correction are the only
way to reduce total analytical error and hence improve
quality. Laboratories have a position between manufac-
turers and clinicians. They do not have the resources (and
often the proprietary knowledge required) to perform the
extensive studies carried out by manufacturers, but they
are responsible in part for the quality of assay results and
thus must be knowledgeable in total analytical error as
well as its sources.

Currently, most total analytical error performance
goals are not provided directly (4, 5). Rather, the total
analytical error goal is constructed from a combination of
a bias goal and an imprecision goal (Eq. 1).

Total analytical error � Bias � 1.65 � imprecision (1)

This model is intuitively appealing for its simplicity
because it would seem that bias and imprecision (e.g.,
systematic and random error) cover all possible error
sources.
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This report will show that the model represented by
Eq. 1 (hereafter referred to as the simple combination
model) can underestimate total analytical error because
some possible error sources are either absent from the
model or not treated properly. Additional error sources
that may be used to establish a more complete model of
total analytical error will be discussed. An alternative
method to estimate total analytical error, referred to as the
distribution-of-differences method and which does not
require modeling at all, will be discussed and contrasted
with the simple combination model. A goal allocation
method that is commonly used in systems engineering
will be reviewed, where it is a common task to allocate an
overall system goal into a series of component goals.
Finally, the role of outliers will be considered.

Additional Error Sources Can Help Establish a More
Complete Model for Total Analytical Error

The bias represented in Eq. 1 represents average bias at a
particular concentration and is commonly estimated from
a method comparison experiment and represented by a
regression equation. Imprecision is the random error in
the method under evaluation and is estimated by mea-
suring replicate samples from the same patient.

Three additional error source types are discussed as
examples of error sources that are neglected, improperly
handled in Eq. 1, or difficult to incorporate. These addi-
tional error sources can affect the estimates of imprecision
and average bias as well as total analytical error.

random biases attributable to interferences in
patient samples: a neglected error source
A patient sample that is being analyzed contains not only
the analyte of interest, but also a unique mixture of
thousands of other chemical substances. If assays were
completely specific, the presence of these additional sub-
stances would be of no consequence. However, most
assays, including immunoassays (6 ), suffer from some
degree of nonspecificity. This means that each patient
sample will possibly exhibit a bias unique to that patient’s
mixture of substances that exhibit nonspecific reactions in
the assay. Examples of this bias, shown in Fig. 1, demon-
strate that some patient samples that are assayed repeat-
edly and compared with a reference method will consis-
tently produce values that are on one side of a regression
line, whereas samples from a different patient specimen
will fall on the opposite side (7 ). In a method comparison
experiment, this random bias will inflate the standard
error of the estimate (Sy�x) and contribute to the average
bias by influencing the regression coefficients.

Lawton et al. (8 ) represent this interference bias as a
random error. Krouwer (9 ), using actual data from a
cholesterol evaluation, showed that failing to account for
this error can underestimate total analytical error. The
random interference bias attributable to nonspecific ef-
fects in patient samples is different from the random error

attributable to repeatedly assaying the same patient sam-
ple. The combination of bias and imprecision in Eq. 1 does
not account for the effect of random interference bias and
will thus underestimate total analytical error unless ran-
dom interference bias is zero. See Appendix A for a
mathematical explanation.

effect of linear drift on imprecision and
average bias: an example of an incorrectly
handled error source
Linear drift, if present, is an example of another error
source that is not correctly accounted for by Eq. 1.
Consider a protocol for estimating imprecision in an assay
that exhibits a positive linear drift. Krouwer (10 ) has
shown, based on work by Haeckel and Schneider (11 ),
that the observed imprecision will actually be a combina-
tion of pure random error and bias, according to Eq. 2.

sa � �sp
2 � b2�

1⁄2 (2)

where

sa � the imprecision observed
sp � the true random error (imprecision)
b � the average bias attributable to linear drift

The amount of bias observed will depend on the protocol.
It will be smallest for a protocol that samples consecutive
duplicate specimens and largest for a protocol that sam-
ples the first and last specimens in a calibration run. A
common protocol of running 10 consecutive replicate
specimens will exhibit an intermediate amount of bias.

Consider the effect of drift on bias estimation from a
method comparison. The concept of average bias implies
that for any sample assayed, the test result should be
equal to random error plus the regression equation (i.e.,
bias is explained as a proportional plus a constant differ-
ence from the reference result). With drift present, this is
not true. Samples assayed early in a calibration run will

Fig. 1. Patient samples A and B have reproducible and different biases
from the reference.
Each curve represents replicated samples from patient A or B.
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have a reproducibly different average bias than samples
assayed later in the run (see Eq. 3).

One can estimate linear drift from a suitable protocol
using a multiple regression model such as Eq. 3.

Y � b0 � b1X � b2t � e (3)

where

Y � the observed result
b0 � the estimated intercept coefficient (constant error)
b1 � the estimated slope coefficient (proportional error)
b2 � the estimated linear drift coefficient (linear drift

error)
e � the estimated random error (pure random error)

X � the reference result
t � time of assay

Another interpretation of this example is that the model
implied by Eq. 1 (e.g., Eq. 3 without the drift term)
contains less knowledge about the true state of the process
than Eq. 3. Goldschmidt and Krouwer (12 ) showed an
example where the proportional bias was incorrectly
estimated when a protocol was used that did not have a
drift term in the model. An illustration, using a simple
regression equation, of the different states of knowledge
provided by random and systematic error is shown in
Table 1.

treatment of outliers
In a method comparison experiment used to estimate
average bias, it is standard and accepted practice (13 ) to
remove outliers, should they occur. It makes sense to
remove these outlier samples when assaying a small
number of samples, otherwise the parameters estimated
will not be representative. The problem is that there is no
mechanism for these outliers to play any role in the simple
combination method. They simply disappear from the
analysis, although they will still be present in real life.
When the distribution-of-differences method (below) is
used, there is no basis for removing outliers, nor is there
anything wrong (from an estimation sense) in a skewed
distribution of differences.

A More Complete List of Total Analytical Error Sources
Additional error sources and the relationship among all of
these error sources are shown in the cause and effect
diagram in Fig. 2. In this diagram, each error source box
is caused by all of the boxes connected below it. The

darker boxes represent the estimation methods used in
the simple combination model. Errors not listed in Fig. 2
may also be present and can be proposed based on
knowledge of the assay technology. For a nearly perfect
assay, all systematic effects will be negligible, and the
assay will exhibit only imprecision. Each error source box
in Fig. 2 is explained below. The first two error sources are
the error sources in Eq. 1.

apparent random error
Apparent random error is the imprecision estimated from
protocols where replicates of a sample are assayed. If
there are no systematic biases present, apparent random
error and pure random error will be equal.

average bias
Average bias is the method used by the simple combina-
tion method to estimate all systematic error. It estimates
the slope (to convert the regression equation to a bias
equation, 1 is subtracted from the slope) and intercept of
a regression equation. The slope and intercept represent
proportional and constant error, respectively. If there are
other systematic errors present, the average bias will be
incorrect. For example, if an assay is not linear at the
upper end of the assay range, the slope and intercept of
the regression equation will only partially express the
average bias at the upper end of the range.

pure random error
Pure random error (not shown in Fig. 2) is the apparent
random error with systematic error removed. This re-
moval can be achieved by a suitable multifactor protocol
(9 ) whereby pure random error is the residual error term
from the model, as in Eq. 3. If systematic effects exist and
are not removed, the apparent random error (e.g., that
calculated without a multifactor protocol) will be greater
than pure random error.

random error
Random error refers to the collection of error sources
whose effect is modeled as samples from a probability
distribution. One can sometimes model the same error
source as either random or systematic, such as discussed
below for interferences.

systematic error
Systematic error is the collection of error sources whose
effect is modeled by an equation that describes the effect
of the error sources for every sample.

protocol-independent bias
Protocol-independent bias refers to a collection of error
sources that are largely independent of the protocol used
to estimate them. Here, the protocol refers to every aspect
of the assay, e.g., the sample order, reagent lot, and
calibration sequence. Protocol-independent refers to the
fact that the protocol usually is not a factor in the

Table 1. Characteristics of systematic and random error.
Systematic effect Random effect

Error source is Known (deterministic) Unknown (probabilistic)
Y explained bya �0 � �1X ��

Y is Known for each
sample

Known for the average
sample

a Assuming that the model is correct.
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magnitude of the error source. For example, if an assay is
inherently nonlinear and the nonlinearity is not corrected
by software, then one can always expect this nonlinearity
to be present. However, in some cases, nonlinearity may
not be independent of the protocol. Nonlinearity can be
caused by instability in a reagent, in which case the
magnitude of the error source may depend on the reagent
lot and its age.

protocol-dependent bias
Protocol-dependent bias refers to a collection of error
sources that are largely dependent on the protocol used to
estimate them. For example, linear drift depends not only
on an instability in the assay response, but also on the
sample order (e.g., the time of assay since the last calibra-
tion). Thus, the tenth sample assayed always has 10 times
as much linear drift as the first sample assayed; hence the
protocol is always involved in the bias equation. In
addition, the extent of drift may vary from run to run.
Usually the magnitude of the drift in a specific run cannot

be predicted and is modeled by sampling the drift run
magnitude from a suitable probability distribution. Thus,
linear drift has a random as well as a systematic compo-
nent. As an equation:

Drift error � Drift run � sample order (4)

where drift run is the amount of drift effect present in a
specific run and is a random effect (a random bias), and
sample order gives the time since the last calibration that
the sample was assayed and is a systematic effect (the
protocol-dependent bias)

random interference bias
For each patient sample, a seemingly random bias com-
ponent, additional to pure random error and caused by
nonspecificity of the assay and the presence of interfering
substances, may exist. For an assay with perfect specific-
ity, the random interferences term would be zero. This
error source can be estimated from a method comparison
experiment (8 ). One can test for the presence of random

Fig. 2. Cause and effect diagram of laboratory error sources.
EP or GP numbers refer to NCCLS guidelines that provide methods to estimate those particular error sources. The shaded boxes are the error sources used in the simple
combination method.
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interference bias by ANOVA by comparing Sy�x to the
imprecision estimated from replicates. The actual sub-
stance(s) causing the interference does not need to be
known for a random interference term to be estimated.

specific interference bias
Specific interference bias is error caused by nonspecificity
of the assay attributable to the presence of a specific
substance. This error is measured by interference experi-
ments (14 ). Manufacturers often test large numbers of
potentially interfering substances. It is conceptually pos-
sible to estimate the effect of every possible interfering
substance in an assay as well as to determine the concen-
tration of each interfering substance in each patient sam-
ple assayed. Were this to be done, this error source would
be completely deterministic. Because this is impractical
(one cannot even be sure that one has thought of all
possible interference candidates), interferences are also
modeled as a random error source in estimations of total
analytical error.

nonlinear bias
Nonlinear bias is bias that cannot be represented by a
proportional relationship between the test and reference
assay concentrations. This bias can be estimated from a
method comparison experiment with higher order poly-
nomial terms in the regression equation (15 ). The high-
dose hook effect in immunoassays is an example of
nonlinear bias.

drift
Drift is an error that is related to the time of assay since
the last calibration. Drift may be linear or nonlinear and
can be estimated by multifactor protocols or by protocols
that specifically account for time of assay.

sample carryover
Sample carryover is an error attributable to the contami-
nation of the current sample with the previous sample.
Sample carryover errors are important only if the concen-
tration differences of the two samples are reasonably
large. Sample carryover may be estimated by multifactor
protocols or by protocols that specifically account for the
possibility of sample contamination, such as assaying a
high-concentration sample followed by a series of low-
concentration samples.

reagent carryover
Reagent carryover is an error in random access analyzers
whereby the current assay is contaminated by reagent
from the previous assay. Reagent carryover errors are
important only when the contamination causes an effect,
such as when an aspartate aminotransferase reagent
precedes a lactate dehydrogenase reagent (lactate dehy-
drogenase is often part of the formulation of an aspartate

aminotransferase reagent). Reagent carryover is estimated
from protocols that take into account these combinations.

reagent/calibrator lot effects
The presence of something that is different in a new
calibrator or reagent compared with the previous calibra-
tor or reagent can cause lot effects. For example, a
calibrator with an erroneously assigned value will cause a
bias in every value assayed with that calibrator lot. These
error sources are often difficult to assess from protocols
because sufficient different lots are often unavailable. In
cases where there are enough samples, these error sources
can be treated as random imprecision components. Man-
ufacturers can assess these error sources for reagent lots
from factorial studies in which different reagents lots are
made with appropriate concentrations of reagent constit-
uents to simulate manufacturing variances. Effects of
calibration lot errors can often by estimated by mathemat-
ical simulation.

Accounting for All Terms in an Expanded Model
To estimate total analytical error by a more complete
model, one must first decide which of the above error
sources (or additional sources not in the above list)
require estimation. Using a suitable protocol, one must
not only estimate the magnitude of the error source, but
also its distribution. This is required because the error
source might not be constant. For example, drift might
vary from one run to the next. Sampling a sufficient
number of runs will provide an estimate of the distribu-
tion of drift coefficients.

Given the distribution of each error source, it is possi-
ble to create a simulation model (e.g., with software) that
samples each error source from its distribution (which
may not be a gaussian distribution) and combines all
errors to arrive at the total analytical error (16 ). To test the
accuracy of the simulation, one can compare total analyt-
ical error estimated from the simulation with total analyt-
ical error estimated directly from a method comparison
experiment.

Typically the detailed equation for this model will be
quite complicated, with every possible effect having its
own term, although in principle, the model will simply be
an expansion of Eq. 1.

Alternative Method to Estimate Total Analytical Error:
The Distribution-of-Differences Method

The distribution-of-differences method does not rely on a
model at all, but simply estimates percentiles from the
ordered distribution of differences collected from a
method comparison experiment. The percentiles are esti-
mated by parametric (17 ) or nonparametric methods (18 ).
Tolerance intervals can also be calculated (19 ). The only
requirement for this estimation is that samples assayed
are representative; this requirement exists for the simple
combination model as well.
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Comparison of Approaches to Estimation of
Total Analytical Error

distribution-of-differences method
Clearly, the main advantage of the distribution-of-differ-
ences method is its simplicity. There is no model to create
or complicated calculations to perform. Note that the
distribution-of-differences method does not preclude es-
timation of individual error sources, which many manu-
facturers or some laboratories may require. This is simply
a separate activity and not required to estimate total
analytical error.

The following example illustrates a benefit of the
distribution-of-differences method compared with the
simple combination model.

Consider a blood gas laboratory that is evaluating a
lactate assay over a 2-week period. The laboratory has
three analyzers; each analyzer receives a new electrode
once a week and is calibrated every 30 min. This means
that the variables instrument, electrode, and calibration
are all potential error sources. The only way that the
simple combination model can accommodate these error
sources is to consider them as random error sources in an
ANOVA model to estimate the imprecision term. For
most laboratories, the correct formulation of the ANOVA
model will be a challenging task. In the distribution-of-
differences method, no ANOVA model is needed. For this
or for any evaluation, one always simply computes all
differences.

A disadvantage of the distribution-of-differences
method is that the “differences” may not be solely attrib-
utable to the candidate method. Nevertheless, it is impor-
tant to predict the outcome of switching an assay from the
current assay (likely to not be a reference assay) to a new
assay. Estimation of differences, whether they are attrib-
utable to the candidate or the comparison method, is
nevertheless important because it is these differences that
clinicians will observe.

The problem of determining which method is causing
the difference is equally true for the simple combination
method when the error source is attributable to bias.
However, imprecision is treated differently in the two
estimation methods. In the distribution-of-differences
method, a difference is the bias between methods plus the
imprecision of each method. Of course, laboratories are
interested in knowing whether candidate methods are
better; therefore, to ascribe as much error as possible to
the comparison method, one should use a reference
method to minimize bias in the comparison method and
run replicate comparison method specimens to minimize
imprecision in the comparison method. An ideal evalua-
tion would be to run a three-way comparison consisting
of the candidate, current, and reference methods.

Although the distribution-of-differences method does
not provide an estimate of imprecision, laboratories will
always evaluate separately the imprecision of a candidate
assay to ensure that it will meet regulatory requirements.

full combination model
The advantage of the full combination model is that, in
addition to giving an estimate of total analytical error, it
also provides detailed information about all error sources.
The main disadvantage of this method is the large effort
required both experimentally and with modeling to arrive
at proper estimates.

simple combination model
The main problem with the simple combination model, as
described above, is that it often underestimates total
analytical error. Moreover, because this method is also
used to construct goals for total analytical error, these
goals will be suspect as well. An example of this is the
total analytical error goal suggested by the National
Cholesterol Education Program, which uses the simple
combination method (20 ).

Detection vs Estimation
The three methods described above are for estimation of
total analytical error and (except for the distribution-of-
differences method) total analytical error sources. Given
that an assay is in use, various quality-control strategies
are useful in signaling results that are beyond prescribed
quality limits attributable to various error sources (21 ).
These detection studies are used to optimize quality-
control rules. Quality control monitors changes in assay
performance as opposed to estimation, which is a one-
time event or snapshot of assay performance obtained
during an evaluation.

Note, however, that optimal quality control can never
detect error attributable to random interference bias be-
cause quality-control samples contain the same matrix in
every sample, unlike patients samples, which contain
mixtures of different substances needed to detect random
interference bias. This highlights the importance of deter-
mining the significance of random interference bias dur-
ing a method evaluation and underscores the limitation of
the simple combination method, which does not account
for this error source.

allocating total analytical error goals
Assay performance goals allow evaluation results to be
compared to a limit to determine whether an assay is
acceptable. Goals are established by manufacturers (or
laboratories) for several reasons:

• To satisfy regulatory requirements
• To meet commercial needs
• To meet medical needs

In addition, assays can be used in different ways,
which may require different goals. For example, an assay
that is used for diagnostic purposes is different from an
assay that is used to monitor patients. In the latter case,
serial measurements require that imprecision is the main
parameter specified (22 ). This section deals with medical
need goals for assays that are used for diagnostic pur-

924 Krouwer: Evaluating Total Error for Diagnostic Assays



poses and assumes that a total analytical error goal has
already been established.

Most assay performance goal setting in clinical chem-
istry has focused on setting goals for individual error
sources (2 ). Although most work has been devoted to
goals for imprecision and bias, other error sources, such as
reagent-to-reagent bias (3 ) and interference bias (23 ),
have been studied. These suggestions provide valuable
insights into assay quality.

One limitation to the above goal-setting process, how-
ever, is that focusing on specifying a performance goal for
an individual error source makes it is difficult to account
for all other possible error sources, which is necessary to
avoid specifying a performance goal for an individual
error source that in practice causes the total analytical
error goal to be exceeded. A solution to this problem is to
create error source goals by allocation, using a systems
engineering approach (24 ).

Using reliability as an example, the systems engineer-
ing approach starts with the desired overall system reli-
ability goal. One then estimates the reliability of each
component from all subsystems and combines the indi-
vidual estimates into an overall system reliability esti-
mate. This is then compared with the goal. If the esti-
mated reliability does not meet its goal, one must allocate
the desired system reliability goal into goals for each
component. Typically, the method used for this allocation
is cost-based. The following example illustrates the sys-
tems engineering approach for an assay.

A Goal Allocation Example
Consider an assay with two error sources that are equal in
magnitude for both imprecision and random interference
bias. Assume that total analytical error was estimated
both directly and by simulation and did not meet its goal.
A manufacturer could allocate the total analytical error
goal into goals for imprecision and random interference
bias so that if these error source goals were met, the total
analytical error goal would be met. Any combination of
error reduction of components that leads to satisfying the
total analytical error goal would work. To perform a
cost-based allocation, a manufacturer would choose the
least expensive design changes that would fulfill the total
analytical error goal.

The above example could be further complicated by
assuming that in addition to the above error sources, there
were errors from five systematic biases (e.g., lot-to-lot
reagent bias). It would almost always be a bad idea to
allocate error equally among all of these error sources
because dividing a total analytical error goal into seven
equal parts would lead to each error goal being quite
stringent. Moreover, the probability that all seven error
sources occur simultaneously and that each at its maxi-
mum level would be extremely low; the pitfalls of such a
“worst case” approach are shown in Appendix B. Thus, the
allocation must take into account probability of occur-
rence.

Outliers Must Be Accounted for
Outlier results are those results that have unusually large
deviations from an expected value. Outliers can cause
medical errors because a large error in a laboratory result
can cause an erroneous patient treatment decision (25 ),
but quantifying outlier rates is generally uncommon.

The use of a total analytical error goal does not solve
the outlier issue, in spite of the word “total”. The problem
is that specifying total analytical error to mean that at least
95% of results are within an acceptable limit also means
that up to 5% of results could be outside of this limit. Even
with 99% limits, 1% of a large number of assay results is
still a big number. Because laboratories can easily report 1
million results per year, if all results just met 99% accep-
tance limits, there would still be 10 000 results per year
that were unacceptable according to total analytical error
goals.

It would be naive to assume that a result just inside a
total analytical error goal would be perfectly acceptable
and that a result just outside this goal would cause a
disaster. There is, rather, a continuum of quality. Thus, if
all results outside the total analytical goal were neverthe-
less close to the goal, it is unlikely that these results would
cause problems. This implies the use of another set of
limits to define what “close to the goal” is. In addition to
total analytical error limits, a wider set of limits could
specify values that should never occur. Of course, one
cannot test for the occurrence of “never”; however, if no
outliers are found in a large sample size, one can guaran-
tee that outlier rates can be no larger than a very small
percentage.

Practically speaking, only manufacturers conduct stud-
ies of this magnitude. Although samples sizes are differ-
ent for each assay, extremely large sample sizes (thou-
sands) are common during product development, and
the combination of results from all field trials often also
produces a large sample size.

The most conservative way to estimate outlier fre-
quency is to consider an outlier as a discrete event and use
the binomial distribution (26 ). It would be unwarranted
to estimate potential outlier magnitudes and rates by
simply calculating higher multiples from an estimated
standard deviation. This is because there is no guarantee
that an outlier comes from the same distribution that is
used to calculate the standard deviation.

Typically, when a manufacturer finds a root cause for
an outlier, either a design change for the assay is imple-
mented, an algorithm is incorporated that prevents the
result from being reported, or in some cases, and the least
desirable, a caution is noted for the condition that could
cause the outlier. Although development is a proprietary
process, it would be helpful if manufacturers reported on
the summary results of studies that estimate outlier rates.

conclusions
Total analytical error is a useful metric for laboratory
assay quality. The use of Eq. 1 to estimate total analytical
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error is incorrect because it does not account for all
potential error sources. Total analytical error can be
estimated directly from a method comparison experi-
ment. This estimate can be compared with a total analyt-
ical error goal. This simple approach can be used by both
laboratories and manufacturers, with manufacturers us-
ing much larger sample sizes and sampling from all
known potential error sources.

By studying the details of the assay process, one can
enumerate various total analytical error sources. Different
protocols are needed to estimate each total analytical error
source. With knowledge of the distribution of error
sources, a simulation model can be used to combine these
sources to estimate total analytical error. The goal for total
analytical error can be allocated into goals for each total
analytical error source. Outlier rates must also be quanti-
fied.

I would like to acknowledge helpful discussions with
several members of NCCLS subcommittee EP21 (Estima-
tion of Total Analytical Error for Clinical Laboratory
Methods).
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Appendix A: Mathematical Relationship between Total
Analytical Error and Imprecision (Reproducibility) and

Patient Biases from Reference
Mandel (27 ) showed how a difference between a test and
reference result can be described as a combination of
random and systematic error (Eq. 1A).

TAE � �y � R� � �y � �� � �� � R� (1A)

Eq. 2A is an expansion of Eq. 1A to account for n
replicates of each of m different specimens.

TAE � �
j � 1

m �
i � 1

n

�yij � Rj� � �
j � 1

m �
i � 1

n

�yij � �i� � �
j � 1

m

��j � Rj�

(2A)

where

TAE � total analytical error
yij � the ith observation from the jth sample of the new

method
Rj � the reference method result for the jth sample
�i � the mean of the jth sample of the new method

In Eq. 2A, the second double summation term is a
measure of imprecision, and the last term represents the

distribution of bias that is observed in each sample as seen
in Fig. 1.

Appendix B: The Problem with the Worst Case Method of
Allocating Goals

Consider an assay that has a total analytical error goal
of � 2 mg/dL and the only error sources comprise five
independent, random biases, each with a normally dis-
tributed error source with zero mean and a SD of 0.2
mg/dL. A worst-case goal-setting method might work as
follows. For each bias, the worst case might be designated
as a 3 SD error � � 0.6 mg/dL. Applied to all biases, this
would equal an error of 5 � 0.6 � � 3 mg/dL, which
exceeds the goal of � 2 mg/dL. Therefore, the SD goal for
each bias would need to be reduced to 0.133 mg/dL
because 0.133 � 3 � 0.4 and 0.4 � 5 � 2.0. This would also
require that each random bias would have to be improved
by 33%.

To see why this is a poor strategy, consider the
likelihood of a result that occurs because each bias is �3
SD (each with the same sign) simultaneously. This is
equal to 2 � 0.0035 � 4.86�11%. On average, we would
need to run �40 billion assays before seeing one such
occurrence. Hence, allocation must take into account
probability of occurrence.
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