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Abstract

Errors in medicine result in over 44,000 preventable deaths annually. Some of these errors are made by specialized physicians at

the time of diagnosis. Building on error frameworks proposed in the literature, we tested the experimental hypothesis that physicians

within a given specialty have a bias in diagnosing cases outside their own domain as being within that domain. Thirty-two board-

certified physicians from four internal medicine subspecialties worked four patient cases each. Verbal protocol analysis and general

linear modeling of the numerical data seem to confirm the experimental hypothesis, indicating that specialists try to ‘‘pull’’ cases

toward their specialty. Specialists generate more diagnostic hypotheses within their domain than outside, and assign higher

probabilities to diagnoses within that domain.

� 2003 Published by Elsevier Inc.

Keywords: Medical errors; Diagnostic errors; Cost of expertise
1. Introduction

Betsy Lehman, a Boston Globe health reporter, died

from an overdose during chemotherapy. Willie King

had the wrong leg amputated. Ben Kolb was eight years

old when he died during surgery due to a drug mixup
[1,2]. And these are just the ‘‘tip of the iceberg’’ of

medical errors [1,2].

One important type of medical error occurs at the

time of diagnosis. The popular press cites cases such as

that of Dr. Franklin K. Yee, whose abdominal pain was

diagnosed as viral gastroenteritis by a gastroenterolo-

gist, caused him to be admitted to a coronary care unit

by a cardiologist, was suspected by a nephrologist to be
the result of kidney stones, and eventually was found on

abdominal surgery to be the result of a ruptured ap-

pendix [3]. This phenomenon of different specialists

projecting their specialties on a patient has not been

studied systematically. In the present paper, the role of

medical specialization in inducing biases that may un-
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derlie some diagnostic medical errors is investigated

empirically.
2. The cost of expertise

It may seem strange to talk about the costs of being

an expert, but there is increasing experimental evidence

that the benefits of expertise are not without costs. The

costs of expertise can be divided into two main catego-

ries: Those related to accuracy of recall, and those re-

lated to inflexibility.

2.1. Accuracy of recall

Experts may outperform novices in recalling the de-

tails of a problem or text. But when the domain

knowledge of experts cannot be utilized, experts tend to

underperform novices. For example, in a study on recall

of random chessboard positions, the performance of

chess experts was slightly worse than that of novices [4].

Similarly, in a study on memory for baseball texts,
participants with high baseball knowledge recalled sig-

nificantly less baseball-irrelevant propositions from a
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text passage describing part of a baseball game than did
participants with low baseball knowledge [5].

2.2. Reduced flexibility

Some of the early work on the costs of expertise was

done by Ggestalt psychologists [6–8]. Luchins argued

that experience produced an Einstellung, or mental set,

that limited the search space of subsequent problem
solving. More recent studies have shown similar results.

For example, Shiffrin and Schneider [9] reported that

people trained for several thousand trials to detect visual

targets among distractors in a consistent-mapping con-

dition were at a serious disadvantage when the target

and distractor sets were reversed. Wiley [10] showed that

problem solvers with a large amount of domain

knowledge are confined by their knowledge to one area
of the search space—a condition that is efficient if the

solution happens to fall in this area but which backfires

if it does not.
3. Characteristics of medical expertise

There is no reason to suspect that expertise in medi-
cine is different from expertise in any other domain. In

fact, research results have emphasized similarities (e.g.

[11–15]). The general characteristics of expertise are

summarized elsewhere [16,17] and will not be repeated

here. Some characteristics of expertise in the medical

domain that bear relevance to the present study will be

discussed.

3.1. Diagnostic reasoning mode

According to Patel and Groen [14], expert clinicians

confronted with routine cases use a data-driven (for-

ward) approach, in which diagnoses are generated from

data by applying a small set of if/then production rules

without generating intermediate hypotheses and evalu-

ating them. Less expert clinicians, such as medical stu-
dents or residents, on the other hand, tend to use a

hypothesis-driven (backward) approach, in which rea-

soning occurs backwards from a hypothesis in an at-

tempt to find data that elucidates it [18]. This assertion is

consistent with findings in other domains such as

physics [19] and mathematics [20], and with the general

notion that in routine situations experts tend to use

highly specific problem-solving structures [21].

3.2. Experts working outside their domain

Cognitive literature holds abundant evidence that

experts excel only at their domain of expertise (see [17]

for an overview). Some of the very few studies that have

examined the performance of subspecialist physicians on
problems outside their area of specialty were done by
Patel and colleagues [22,23]. Cardiologists and endo-

crinologists were asked to read cardiology and endo-

crinology cases and to think-aloud as they were reading

them, or to recall case information and explain the un-

derlying pathophysiology. The general finding is that

experts working within their subdomain tend to use

forward strategy more, and to rely on pathophysiolog-

ical knowledge less, than experts working outside their
subdomain. No significant difference in diagnostic ac-

curacy was found, but it is hard to make any meaningful

claim on this issue due to the small sample sizes (typi-

cally less than 10 participants total, working on one to

two cases).
4. The present work

Based on the above discussion, it can be said that

prior knowledge plays a crucial role in diagnostic rea-

soning. Expert performance is a function of the orga-

nization, structure, and quality of this prior knowledge.

Further, the prior knowledge of the expert is automat-

ically and unintentionally activated—experts cannot help

being influenced by it. Therefore, it is plausible to sus-
pect that what one already knows may bias the way one

structures a problem and goes about solving it. This

‘‘bias’’ may be beneficial in some cases but costly in

others. The goal of the present work is to investigate

experimentally whether the cost of this bias is mani-

fested by subspecialists working on problems that are

outside their subspecialty area. Specifically, this study is

concerned with whether physicians within a given spe-
cialty have a bias in diagnosing cases outside their own

domain as being within that domain.
5. Methods

5.1. Participants

Thirty-two board-certified physicians practicing in

the Pittsburgh area were recruited for this study: eight

from each of the internal medicine subspecialties—car-

diology, hematology, and infectious diseases (ID)—and

eight internal medicine general practitioners (generalists)

who did not subspecialize. (In that which follows, we

refer to the subspecialties of cardiology, hematology,

and infectious diseases as the ‘‘subspecialties of inter-
est.’’) The participants� years of experience, after fin-

ishing all formal training, averaged 15.8 years (the

standard deviation was 9.9 years and the median was

15.5 years). Participants volunteered their time and did

not receive monetary compensation for participation in

the study.
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5.2. Material

The material used in this study consists of four pa-

tient cases, chosen from a total of 36 challenging cases,

and used in studies reported elsewhere [24,25]. Each of

these four patient cases is represented in a two- to five-

page abstract prepared by an expert clinician based on

the actual patient charts. The abstracts include all the

salient history, physical examination findings, labora-
tory results, and radiological and other diagnostic

studies. They also include ample non-salient data to

avoid cueing. However, the abstracts do not include the

findings that were judged by the expert abstractor to be

gold standard or definitive findings, such as a positive

biopsy, because including such findings would render

the diagnosis trivial for clinicians.

The four challenging cases that were used in the
present study satisfy three conditions: (1) their correct

diagnoses belong, respectively, to the three subspecial-

ties of interest, plus a fourth subspecialty not repre-

sented among the experts, (2) no case is inherently

misleading, and (3) no case is inherently easily diagnosed

into one specialty exclusively.
5.3. Design and procedure

Participants read the four patient cases on paper, one

after the other. The presentation sequence of the cases

was counterbalanced. For each case, the participants

viewed its abstract in three consecutive segments corre-

sponding to: chief complaint and history, physical ex-

amination, and laboratory data. Because the cases were

presented on paper, participants were able to go back to
view information from prior segments, but the instruc-

tions they were given asked them not to change the re-

sponses they provided in previous segments.

At the end of each segment, the participants were

asked to give a set of up to six differential diagnoses

along with an associated degree of belief (ranging from 0

to 100) that each diagnosis was the correct one. The

degree of belief was taken as a measure for a partici-
pant�s confidence in the correctness of his or her answer,

and is a probability expressed as a percentage. The in-

structions specified that the numbers should add up to

100, but some participants did not follow this require-

ment. Therefore, the degrees of belief were later pro-

portionately normalized so that their sum in a

differential diagnosis set (after seeing one segment of one

case) added up to 100. The scale was also transformed
from 100 back to 1, consistent with the standard rep-

resentation of probabilities.

Participants were asked to think-aloud as they

worked the cases, and their verbal protocols were tape-

recorded and later transcribed for analysis. The experi-

menter prompted participants to think loudly or to
verbalize his/her thoughts whenever there was a period
of several seconds of silence.

The independent variables in the study were:

a. The specialty of the participant: cardiology, hematol-

ogy, infectious diseases, and general medicine.

b. The specialty of the case: cardiology, hematology, in-

fectious diseases, and gastroenterology.

c. The amount of case information revealed to partici-

pants before they were asked to give a set of differen-
tial diagnoses: chief complaint and history only; the

above plus physical examination; and the above plus

lab data.

d. Whether the participant worked on a case that

matched his/her specialty (same_domain). While this

variable is subsumed under the first two variables,

we are treating it here as a separate variable to facil-

itate analysis.
The dependent variables were:

a. The probability assigned to the correct case specialty

(P(CS)): The sum of the probabilities assigned by a

participant, after seeing a segment of a case, to all di-

agnoses that belonged to the correct specialty of the

case. For example, if a participant saw the chief com-

plaint and history of case 1 (a cardiology case) and

offered a differential diagnosis of ‘‘aortic dissection,
20%’’ (which is a cardiology diagnosis), ‘‘aortic steno-

sis, 50%’’ (a cardiology diagnosis), and ‘‘hemolytic

anemia, 30%’’ (a hematology diagnosis), then P(CS)

would have been 70 to represent all the cardiology di-

agnoses in the differential.

b. The probability assigned to the correct diagnosis

(P(CD)): The probability assigned by a participant

to the correct diagnosis of a patient case.
c. The probability assigned to the participant�s own spe-

cialty (P(OS)): The sum of the probabilities assigned

by a participant, after seeing a segment of a case, to

all diagnoses that belonged to the participant�s spe-

cialty. For example, if the differential diagnosis above

was provided by a cardiologist, then P(OS) would be

70. If it was provided by a hematologist, then P(OS)

would be 30. This variable is not defined or used
for the generalists.

The first two variables reflect diagnostic accuracy,

with the first being less strict than the second, as it in-

dicates the probability of being in the ‘‘general ball-

park.’’ The last variable reflects the degree of bias

towards one�s own specialty.

To facilitate the calculation of the first and last de-

pendent variables (P(CS) and P(OS)), each diagnosis
provided by participants was mapped to its corre-

sponding medical specialty, such as mapping aortic

stenosis to cardiology. This was done by a physician,

relying on a standard medical textbook [26]. This me-

chanical task boils down to noting the title of the

chapter in which the diagnosis is discussed in the text-

book.
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The hypothesis being tested in this study is: the par-
ticipant�s specialty biases the participant�s answers by

influencing the probability assigned to the participant�s
own specialty. Specifically, participant specialty is re-

lated to P(OS), even when controlled for the case. In

addition, participants assign a higher collective proba-

bility to hypotheses within their domain of expertise

than hypotheses outside their domain.
6. Results

In the following sections, we present (a) data from the

verbal protocols, (b) ANOVA results of the probabilities

assigned to different specialties, and (c) analyses using a

generalized linear model.

6.1. Verbal protocol analyses

6.1.1. Generation of diagnostic hypotheses

Using the verbal protocols that participants gener-

ated as they worked through the experimental cases, we

extracted all the diagnostic hypotheses mentioned in

these protocols and mapped them to their specialties

using a standard medical textbook [26]. This mechanical
task boils down to noting the title of the chapter in
Fig. 1. The number of diagnostic hypotheses generated by participants

in the verbal protocols for all cases.

Table 1

Log odds, standard error, and p values for the hypothesis that the number of

similar

Domain of participants Domain of diagnoses

Cardiology Hematology

Cardiology Infectious diseases

Cardiology Gastroenterology

Hematology Cardiology

Hematology Infectious diseases

Hematology Gastroenterology

Infectious diseases Cardiology

Infectious diseases Hematology

Infectious diseases Gastroenterology
which the diagnosis is discussed in the textbook. We
then performed a simple counting of these hypotheses. If

the same hypothesis was mentioned repeatedly by a

participant for the same case, only the first utterance

was counted. Fig. 1 shows the number of diagnostic

hypotheses from each medical specialty that was gen-

erated by each group of specialists in the study while

working through the four cases.

Note the peak that indicates a possible correlation
between the domain of the participant and the domain

of the diagnostic hypotheses that were generated.

For each participant�s specialty, we calculated the log

odds of a hypothesis within the participant�s specialty vs

outside the specialty, for each of the three opposing

specialties. We also calculated the standard errors and p
values for the hypothesis that the odds are even. For

example, for cardiologists we calculated the log odds of
a hypothesis within cardiology vs within hematology,

along with the standard error and p value for the hy-

pothesis that the number of diagnoses in cardiology and

in hematology is the same. We then repeated this for the

other diagnostic domains and for the other participant

domains. Table 1 shows the results of these calculations.

Note that all p values are highly significant, indicating

that participants generated more diagnostic hypotheses
within their domain than outside their domain.

6.1.2. Cues used in hypothesis generation

For every new diagnostic hypothesis generated by

specialists, we noted whether the generation was based

on a single cue in the patient case or multiple cues.

Examples about generating a hypothesis based on a

single cue include: ‘‘He�s got a very low MCV, which is
72. [. . .] You see that with um, iron deficiency anemia,’’

and ‘‘Weight loss always makes you concerned about

cancer.’’ Examples about generating hypotheses based

on multiple cues include: ‘‘With him hemolyzing and

with normal coags, and having thrombocytopenia, um,

I�d wonder about the possibility of um, TTP,’’ and ‘‘In

terms of diagnosis probably ah, with the history of

marijuana use, with a murmur, with a temperature you
are now thinking in terms of endocarditis.’’ There was
diagnoses in the participant�s domain and that in the other domains is

Log odd Standard error p value

1.089 0.198 <0.001

0.765 0.177 <0.001

1.480 0.231 <0.001

0.890 0.175 <0.001

0.730 0.166 <0.001

1.285 0.203 <0.001

1.291 0.197 <0.001

1.354 0.201 <0.001

1.420 0.207 <0.001



Table 2

The number of cues as a basis for generating hypotheses

Basis of generating new hypotheses Number of hypotheses in cases matching

participants� specialty
Number of hypotheses in cases not

matching participants� specialty

Single cue 29 190

Multiple cue 61 45

Can�t Determine 128 334

Total 218 569
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enough information in the protocols to allow for clas-

sifying 42% of the hypotheses into these two cue cate-

gories, and the remaining hypotheses were classified into

a ‘‘Can�t Determine’’ category. Table 2 shows the results

of this classification.

We calculated the log odds of a single-cue hypothesis

within the participants� specialties vs a multiple-cue

hypothesis, along with the standard error and p value
for the experimental hypothesis that the odds are even.

We repeated this for the single-cue vs multiple-cue hy-

potheses in cases outside the participants� specialties.
The results indicated that participants are more likely to

base hypotheses on multiple cues when working on cases

within their specialty (log odds¼ 0.744, p < 0:001), and
to base them on single cues when working on cases

outside their specialty (log odds¼ 1.44, p < 0:001).

6.1.3. Anomalies

For every new hypothesis generated by specialists, we

noted whether there was an indication in the verbal

protocols that the specialist recognized ‘‘an anomaly,’’

or recognized that the hypothesis generated did not

quite fit the patient case being examined. Examples

about anomaly recognition include: ‘‘She could have a
urinary tract infection, but it sounds more like this is not

a clean catch,’’ and ‘‘He could have bacterial meningitis.

It doesn�t sound like it, but he could.’’ We then noted,

for each instance of an anomaly, whether the specialist

kept the anomalous hypothesis in the final differential

diagnosis list or not. The results can be found in Table 3.

Chi-squared analysis indicated that specialists are

more likely to recognize anomalies in the hypotheses
they generated when working on cases matching their

specialty than they are when working on cases outside

their specialty (v2ð1Þ ¼ 16:31, p < 0:001). However,

once recognized, an anomalous hypothesis is equally

likely to be kept in the final differential diagnosis list for
Table 3

Instances of anomaly recognition

Cases matching par

Total number of hypotheses 218

Instances of anomaly recognition 27

Hypotheses kept despite anomaly recognition 18
cases matching or not matching the participants� spe-
cialty (v2ð1Þ ¼ 0:01, p ¼ 0:92).

6.1.4. Summary of protocol analysis results

In summary, the protocol analysis showed that par-

ticipants generated more diagnostic hypotheses within

their domain of expertise than outside. It also showed

that when specialists work on cases within their domain
of expertise, they are more likely to base their hypoth-

eses on multiple cues as opposed to single cues, and are

more likely to recognize anomalies in the hypotheses

they generate. However, an anomaly recognized does

not necessarily translate into a hypothesis rejected.

6.2. ANOVA results for the probabilities assigned to

different specialties

We calculated the probabilities assigned by each

group of specialists to each of the subspecialties of in-

terest plus gastroenterology. For example, if a cardiol-

ogist provided six diagnoses after seeing a patient case,

two of which were in the subspecialty of hematology,

then the probabilities assigned to these two diagnoses

were added to generate one probability assigned by this
participant to hematology. The averages of these prob-

abilities are shown in Table 4. Table 4 also shows the

ANOVA results for the hypothesis that the probabilities

assigned to the different specialties by each group of

specialists are equal. The last column in each row shows

the minimum difference per Scheff�ee�s test at the 0.05

level for two probabilities in that row to be significantly

different.
The analysis indicates that, with the exception of

hematologists, participants are inclined to assign higher

probabilities to their own specialty than other special-

ties, and that this inclination decreases as more case

information is revealed.
ticipants� specialty Cases not matching participants� specialty

569

25

17



Table 4

The average probabilities assigned to different specialties by each group of participants after each case segment

Participant

specialty

Case

segment

Average

probability

assigned to

cardiology

Average

probability

assigned to

hematology

Average

probability

assigned

to infectious

diseases

Average

probability

assigned to

gastroenterology

F p value Scheff�ee�s
critical

difference

at the

0.05 level

Cardiology 1 0.44 0.04 0.16 0.14 14.68 <0.001 0.09

Cardiology 2 0.48 0.03 0.20 0.09 16.64 <0.001 0.10

Cardiology 3 0.26 0.25 0.19 0.14 1.13 0.341 0.10

Hem 1 0.20 0.22 0.16 0.13 0.94 0.425 0.08

Hem 2 0.20 0.20 0.17 0.16 0.18 0.910 0.09

Hem 3 0.12 0.35 0.13 0.18 4.99 0.003 0.10

ID 1 0.19 0.03 0.39 0.17 9.79 <0.001 0.09

ID 2 0.17 0.07 0.43 0.12 11.77 <0.001 0.09

ID 3 0.09 0.28 0.31 0.17 2.93 0.037 0.11

The table also shows the ANOVA F and p values for the hypothesis that the probabilities in each line are equal. Scheff�ee�s critical difference

between the averages appears in the last column.

66 A. Hashem et al. / Journal of Biomedical Informatics 36 (2003) 61–69
6.3. Generalized linear model

We built a generalized linear model to fit the data

using quasi-likelihood. The goal of this task was to find

a model that accurately simulates the experimental data

and helps to identify the significant predictors for each

of the three dependent variables in the study: the

probability assigned to the correct case specialty
(P(CS)), the probability assigned to the correct diagnosis

(P(CD)), and the probability assigned to the partici-

pant�s own specialty (P(OS)). The model will serve as a

tool to establish relationships between these dependent

variables and other variables.

Because the dependent variables were the assigned

probabilities, it was appropriate to treat the data as

pseudo-binomial observations and to perform a linear
logistic analysis. However, the data were found to be

significantly under-dispersed. Hence, it was necessary to

performquasi-likelihood estimationwith binomial family

link functions and estimate the dispersion parameters

[27]. First, for the task of variable selection, exploratory

univariate analyses were performed. The Kruskal–Wallis

rank sum test [28] was used to test for potential effects

on the three dependent variables by the following vari-
ables: specialty of the case, specialty of the participant, the

sequential order in which a case was presented to partic-

ipants, the amount of case information revealed to

participants, and whether the participant was working on

a case that matched his or her specialty. This test was

used because the distributions of the three dependent

variables were significantly non-normal. Kendall�s rank
correlation tau [29] was used to test for significant corre-
lation between the participants� years of experience

and the three dependent variables. The statistical package

S-Plus was used to perform all the analyses.

The univariate analysis highlighted four potential

covariates: amount of information revealed, case spe-

cialty, participant specialty, and whether the partici-
pant�s specialty and the case specialty match. Next

forward and backward stepwise variable selection pro-

cedures were employed to generate plausible multivari-

ate models for the three dependent variables. Interaction

and quadratic terms were added to the variable set to

check the linearity and additivity model assumptions.

The following model fits the experimental data ade-

quately, as confirmed by deviance residual inspection
and leverage and influence diagnostics

log
p

1� p

� �
¼ b0 þ

Xp

i¼1

bixi; ð1Þ

where:
• p is the particular probability, or dependent variable,

being modeled.

• xi are the covariates. They take a value of 1 when the

circumstances being modeled match the entry in the
‘‘parameter’’ column in Tables 5, 6, or 7, for P(CS),

P(CD), or P(OS), respectively. Otherwise, they take a

value of 0.

• i represents a line number in Tables 5, 6, or 7. p rep-

resents the largest i in these tables.

• b0 (the intercept) and bi are parameters for the model

whose estimates can be found in Tables 5–7.

The following subsections provide more details about
how the model applies to the three dependent variables.

The important message to take from these subsections

concerns which variables are significant predictors for

each of the dependent variables, as this will be taken as

evidence for a relationship between the predictor and the

predicted variable. We have pointed out these predictors

in the corresponding subsections, and the implications

are addressed in Section 7.

6.3.1. Modeling the probability assigned to the correct

specialty (P(CS))

Table 5 provides the parameter estimates for the

probability assigned to the correct specialty (P(CS))



Table 5

Parameter estimates, standard errors, and t values for Wald test that parameter¼ 0 for the P(CS) model

i Parameter Estimate (bi) Standard error t value t value significant?

0 Intercept (b0) )0.126 0.212 )0.594 No

1 Case specialty¼Gastroenterology 0.421 0.221 1.909 No

2 Case specialty¼Hematology )2.872 0.322 )8.932 Yes

3 Case specialty¼ Infectious diseases )1.119 0.229 )4.883 Yes

4 Same_domain¼YES 1.458 0.201 7.268 Yes

5 Information revealed¼All )0.566 0.271 )2.090 Yes

6 Participant specialty¼Hematology )0.123 0.200 )0.616 No

7 Participant specialty¼ Infectious diseases )0.026 0.195 )0.126 No

8 Participant specialty¼General medicine 0.411 0.205 2.003 Yes

9 Case specialty¼Gastroenterology�
information revealed¼All

1.049 0.386 2.721 Yes

10 Case specialty¼Hematology� information

revealed¼All

3.652 0.452 8.080 Yes

11 Case specialty¼ Infectious diseases�
information revealed¼All

0.876 0.390 2.248 Yes

Table 6

Parameter estimates, standard errors, and t values for the Wald test that parameter¼ 0 for the P(CD) model

i Parameter Estimate (bi) Standard error t value t value significant?

0 Intercept (b0) )4.521 0.399 )11.343 Yes

1 Case specialty¼Gastroenterology 0.976 0.421 2.317 Yes

2 Case specialty ¼Hematology )2.756 1.017 )2.710 Yes

3 Case specialty ¼ Infectious diseases )2.434 0.794 )3.065 Yes

4 Same_domain¼YES 2.343 0.375 6.250 Yes

5 Participant specialty¼Hematology 0.236 0.350 0.673 No

6 Participant specialty¼ Infectious diseases 0.795 0.360 2.209 Yes

7 Participant specialty¼General medicine 1.546 0.344 4.491 Yes

8 Case specialty¼Cardiology�
information revealed¼All

)0.473 0.564 )0.838 No

9 Case specialty¼Gastroenterology�
information revealed¼All

2.054 0.313 6.563 Yes

10 Case specialty¼Hematology�
information revealed¼All

4.650 0.987 4.712 Yes

11 Case specialty¼ Infectious diseases�
information revealed¼All

)0.120 1.264 )0.095 No

Table 7

Parameter estimates, standard errors, and t values for the Wald test that parameter¼ 0 for the P(OS) model

i Parameter Estimate (bi) Standard error t value t value significant?

0 Intercept (b0) )0.593 0.225 )2.632 Yes

1 Same_domain¼YES 1.549 0.203 7.620 Yes

2 Information revealed¼Most 0.734 0.177 4.146 Yes

3 Participant specialty¼Hematology )0.700 0.214 )3.268 Yes

4 Participant specialty¼ Infectious diseases )0.215 0.204 )1.054 No

5 Case specialty¼Gastroenterology )0.592 0.254 )2.330 Yes

6 Case specialty ¼Hematology )0.428 0.234 )1.828 No

7 Case specialty¼ Infectious diseases )0.579 0.242 )2.395 Yes
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model. It also includes the standard errors and the t
values for Wald test that the parameter is zero.

ANOVA showed that the significant predictors for

the probability assigned to the correct specialty were the

case specialty, whether the case specialty and the par-

ticipant specialty match (same_domain) and whether

participants viewed the third portion of the case infor-
mation (information revealed¼ all), and the participant

specialty.

6.3.2. Modeling the probability assigned to the correct

diagnosis (P(CD))

Table 6 provides the parameter estimates for the

probability assigned to the correct diagnosis (P(CD))



Table 8

A matrix showing the significant predictors for the three dependent variables

Case specialty Participant specialty Same_domain Amount of information revealed

P(CS) X X X X

P(CD) X X X X

P(OS) X X X
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model. It also includes the standard errors and the

t values for Wald test that a parameter is zero.

ANOVA showed that the significant predictors for the

probability assigned to the correct diagnosis were the case

specialty, participant specialty, whether the case specialty

and the participant specialty match (same_domain), and

whether participants viewed the third portion of the case
information (information revealed¼ all).

6.3.3. Modeling the probability assigned to the partici-

pant’s own specialty (P(OS))

Table 7 provides the parameter estimates for proba-

bility assigned to the participant�s own specialty (P(OS))

model. It also includes the standard errors and the t
values for the Wald test that the parameter is zero.

ANOVA showed that the significant predictors for the

probability assigned to the participant�s own specialty

were whether the case specialty and the participant spe-

cialty matched (same_domain), whether participants

viewed the second portion of the case information (in-

formation revealed¼most), and the participant�s spe-

cialty. A weak predictor is the case specialty.

6.3.4. Summary of the generalized linear model results

Based on the previous analysis, we can build the

following table (Table 8) to show which variables are

significant predictors for the three dependent variables

P(CS), P(CD), and P(OS).

It is important to note that each of these predictors

was significant, even when controlling for the other

predictors.
The generalized linear model, then, indicates that

diagnostic accuracy (in the weak sense of identifying the

correct case specialty and in the strong sense of identi-

fying the correct diagnosis) is predicted by the case

specialty, the participant specialty, the amount of in-

formation revealed, and whether the participant�s spe-

cialty and case specialty match. The model also indicates

that the tendency to identify a case as belonging to one�s
own specialty is predicted by the participant specialty,

the amount of information revealed, and whether the

participant�s specialty and the case specialty match.
7. Discussion

The main point of this study was to examine whether
physicians with a given specialty have a bias in diag-
nosing cases outside their own domain as being within

that domain. The answer appears to be yes, and several

pieces of evidence support this view:

a. As can be seen from Table 8, a participant�s specialty
is related to the probability assigned by that partici-

pant to his or her own specialty when diagnosing a

case, even when we control for the case. This estab-
lishes a relationship between the specialty and the

participant�s answer.
b. From Table 4, we see that participants assign a higher

collective probability to hypotheses within their do-

main of expertise than outside this domain (except

for hematologists). Therefore, it appears that a partic-

ipant�s specialty biases the participant�s answers to a

case diagnosis by influencing the probability assigned
to the participant�s own specialty.

c. From Table 1, we can see that in the verbal protocols,

participants generate many more diagnostic hypothe-

ses within their domain than outside their domain,

further indicating a bias toward one�s specialty.
This confirms the experimental hypothesis, that there

is a bias toward one�s specialty.
Using Rasmussen�s skill-rule-knowledge (SRK)

framework for understanding human error [30], we can

say that because of the automation that results from

years of experience with cases within one�s specialty,

many rules or schemas at the intermediate level of per-

formance are acquired to codify expertise. Many of

these rules are primed to be quickly activated, even with

minimal information, and sometimes prematurely [31].

This premature activation leads to the generation of
hypotheses within one�s specialty, as evidenced by the

verbal protocols findings, and to assigning higher

probabilities to these hypotheses.

The protocol analysis showed that when specialists

work on cases within their domain of expertise, they are

more likely to base their hypotheses on multiple cues as

opposed to single cues, and are more likely to recognize

anomalies in the hypotheses they generate. This points
to the elaborate knowledge structures to represent an

expert�s domain and to the impoverished knowledge

structures representing the other domains, and is con-

sistent with findings in other fields such as chess [4,32]

and physics [19,33]. The use of only single cues outside

the specialties of expertise suggests that simple IF-

THEN conditional rules are being utilized, whereas

experts working within their specialties are likely us-
ing ‘‘second-order’’ interactive cues [33]. That is, for
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specialists, cues are not directly related to diagnoses (or
actions), but rather, their interactions may suggest sec-

ond-order cues.

One can see from Table 8 that diagnostic accuracy is

related to the participant�s specialty, indicating that par-

ticipants from some specialties are more diagnostically

accurate than others. Looking at the line associated with

i ¼ 8 in Table 5, and i ¼ 7 in Table 6, one can see that

generalists are overall significantly better diagnosticians
than the baseline. It is particularly interesting to note that

generalists do better than the baseline, whereas specialists

tend to be biased toward their own specialty.

This study had several limitations. The number of

cases used (four) is relatively small. Although the find-

ings in this study were present despite controlling for the

case, it is possible that different cases would show dif-

ferent results. Also, participants were largely affiliated
with an academic medical center, and therefore the re-

sults may not generalize to other practice settings. The

case material used in this study, although comprehensive

and based on real patient charts, was not the complete

patient record and was not the same as the real patient.

In practice, physicians typically have access to more

information about their patients than the summaries

provided for this study. In addition, if the participants
were examining real patients under their care, their

motivation, and subsequently their performance, might

have been different.
References

[1] Cook R, Woods D, Miller C. A tale of two stories: contrasting

views of patient safety. Chicago: National Patient Safety Foun-

dation; 1998.

[2] Kohn LT, Corrigan JM, Donaldsons MS, editors. To err is

human: building a safer health system. Washington, DC: National

Academy Press; 2000.

[3] Altman LK. How tools of medicine get in the way? New York

Times 2000;(May 12):C3.

[4] Chase WG, Simon HA. The mind�s eye in chess. In: Chase WG,

editor. Visual information processing. New York: Academic

Press; 1973.

[5] Voss JF, Vesonder G, Spilich H. Text generation and recall by

high-knowledge and low-knowledge individuals. J Verbal Learn

Verbal Behav 1980;9:651–67.

[6] Duncker K. On problem solving. Psychol Monogr 1945;58:270.

[7] Luchins AS. Mechanization in problem solving. Psychol Monogr

1942;54:6, Whole No. 246.

[8] Luchins AS, Luchins EH. Rigidity of behavior: a variational

approach to the effects of Einstellung. Eugene, OR: University of

Oregon Books; 1959.

[9] Shiffrin RM, Schneider W. Controlled and automatic human

information processing: II. Perceptual learning, automatic attend-

ing, and a general theory. Psychol Rev 1977;84:127–90.

[10] Wiley J. Expertise as mental set: the effects of domain knowledge

in creative problem solving. Unpublished PhD Dissertation,

University of Pittsburgh, 1996.

[11] Boshuizen HPA, Hobus PPM, Custers EJFM, Schmidt HG.

Cognitive effects of practical experience. In: Evans DE, Patel VL,
editors. Advanced models of cognition for medical training and

practice, vol. 97. Berlin: Springer; 1991. p. 337–48.

[12] Elstein AS, Shulman LS, Sprafka SA. Medical problem solving:

an analysis of clinical reasoning. Cambridge, MA: Harvard

University Press; 1978.

[13] Elstein AS, Shulman LS, Sprafka SA. Medical problem solving: a

ten-year retrospective. Eval Health Prof 1990;13/1:5–36.

[14] Patel VL, Groen GJ. Knowledge-based solution strategies in

medical reasoning. Cogn Sci 1986;10:91–116.

[15] Patel VL, Groen GJ. Cognitive frameworks for clinical reasoning:

applications for training and practice. In: Evans DE, Patel VL,

editors. Advanced models of cognition for medical training and

practice, vol. 97. Berlin: Springer; 1991. p. 193–211.

[16] Ericsson KA, editor. The road to excellence: the acquisition of

expert performance in the arts and sciences, sports, and games.

Mahwah, NJ: Erlbaum; 1996.

[17] Glaser R, Chi MTH. Overview. In: Chi MTH, Glaser R, Farr MJ,

editors. The nature of expertis. Hillsdale, NJ: Erlbaum; 1988. p.

xv–xxviii.

[18] Patel VL, Kaufman DR. Clinical reasoning and biomedical

knowledge: implications for teaching. In: Higgs J, Jones M,

editors. Clinical reasoning in the health professions. Oxford, UK:

Butterworth–Heinemann Ltd; 1995. p. 117–28.

[19] Larkin JH, McDermott J, Simon HA, Simon DP. Expert and

novice performances in solving physics problems. Science

1980;208:1335–42.

[20] Hinsley DA, Hayes JR, Simon HA. From words to equations:

meaning and representation in algebra word problems. In: Just

MA, Carpenter PA, editors. Cognitive processes in comprehen-

sion. Hillsdale, NJ: Erlbaum; 1977. p. 89–108.

[21] Ericsson KA, Smith J. Prospects and limits of the empirical

study of expertise: an introduction. In: Ericsson KA, Smith

J, editors. Toward a general theory of expertise: prospects

and limits. New York: Cambridge University Press; 1991. p.

1–38.

[22] Joseph GM, Patel VL. Domain knowledge and hypothesis

generation in diagnostic reasoning. Med Decis Making

1990;10:31–46.

[23] Patel VL, Groen GJ, Arocha JF. Medical expertise as a function

of task difficulty. Mem Cognit 1990;18:394–406.

[24] Elstein AS, Friedman CP, Wolf FM, Murphy G, Miller J, Fine P,

Heckerling P, Miller T, Sisson J, Barlas S, Biolsi K, Ng M, Mei X,

Franz T, Capitano A. Effects of a decision support system on the

diagnostic accuracy of users: a preliminary report. JAMIA 1996;3/

6:422–8.

[25] Friedman CP, Elstein AS, Wolf FM, Murphy GC, Franz TM,

Heckerling PS, Fine PL, Miller TM, Abraham V. Enhancement of

clinicians� diagnostic reasoning by computer-based consultation.

JAMA 1999;282/19:1851–6.

[26] Cecil RL. Cecil�s Textbook of Medicine. 20th ed. Philadelphia:

W.B. Saunders; 1996.

[27] McCullagh P, Nelder JA. Generalized linear models. 2nd ed.

London: Chapman & Hall; 1989.

[28] Hollander M, Wolfe DA. Nonparametric statistical methods. New

York: Wiley; 1973.

[29] Conover WJ. Practical nonparametric statistics. 2nd ed. New

York: Wiley; 1980.

[30] Rasmussen J. Information processing and human-machine inter-

action: an approach to cognitive engineering. New York: North-

Holland; 1986.

[31] Reason JT. Human error. Cambridge, England: Cambridge

University Press; 1990.

[32] de Groot AD. Thought and choice in chess. New York: Mouton;

1965.

[33] Chi MTH, Feltovich PJ, Glaser R. Categorization and represen-

tation of physics problems by experts and novices. Cogn Sci

1981;5:121–52.


	Medical errors as a result of specialization
	Introduction
	The cost of expertise
	Accuracy of recall
	Reduced flexibility

	Characteristics of medical expertise
	Diagnostic reasoning mode
	Experts working outside their domain

	The present work
	Methods
	Participants
	Material
	Design and procedure

	Results
	Verbal protocol analyses
	Generation of diagnostic hypotheses
	Cues used in hypothesis generation
	Anomalies
	Summary of protocol analysis results

	ANOVA results for the probabilities assigned to different specialties
	Generalized linear model
	Modeling the probability assigned to the correct specialty (P(CS))
	Modeling the probability assigned to the correct diagnosis (P(CD))
	Modeling the probability assigned to the participant&rsquo;s own specialty (P(OS))
	Summary of the generalized linear model results


	Discussion
	References


