
(ABI 377; PE Biosystems) was Ampli-Taq DNA polymer-
ase. Another problem may be attributable to the produc-
tion of uneven peak-height patterns, which are caused by
differences in the efficiency of dideoxy termination at
different bases and are affected by sequence context as
well. Zakeri et al. (5 ) reported that a heterozygous C peak
was much smaller in size than a heterozygous G peak.
This is in agreement with our results. In addition to the
production of uneven peaks, a high background, pro-
duced by impurities in the DNA template, could further
complicate the results, especially for heterozygote detec-
tion.

In our case, the background in the electropherograms
was fairly low because all the 998-bp DNA fragments
were purified by gel extraction. The quality of sequence
data was actually very good for each sample, allowing us
to read a sequence of ;500 nucleotides, which matched
completely with the published NAT2 gene sequence (9 ).
However, in a few samples, the signals produced by
heterozygosity at the T341C and C282T sites were below the
set default value (30%) for heterozygote detection. For
example, our quality-control sample (sample 20) could be
scored as a borderline heterozygote in the reverse se-
quencing reaction (27% G and 100% A) but not with the
forward primer. If the threshold value of heterozygote
detection was set lower, e.g., 20%, then sample 10 could
also be scored as a heterozygote, at least in one sequenc-
ing direction. When a scoring problem arises for a sample
after sequencing in both directions, it should be consid-
ered an undefined genotype until an independent method
is used for its identification. We therefore used indepen-
dent PCR-RFLP methods to check the genotypes of all 20
samples at three different polymorphic sites in the NAT2
gene, and discrepancies were found between the sequenc-
ing and RFLP methods for only four test samples (Table 1,
samples 8, 9, 10, and 11).

In conclusion, there are some inherent problems in
automated DNA sequencing, which may lead to inaccu-
rate heterozygote identification in some samples. Until
the associated problems are fully resolved, precautions
should be taken in the use of automated sequencing for
heterozygote detection. If possible, we recommend the
use of two complementary PCR-RFLP methods in this
type of analysis.
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Preeclampsia is a multisystem disorder specific to preg-
nant women. It remains one of the most important causes
of maternal and fetal mortality and morbidity in devel-
oped countries (1 ). Although the pathogenesis of this
condition is not fully understood, it is now widely ac-
cepted that vascular endothelial cell dysfunction is the
final common pathway responsible for the maternal syn-
drome (2, 3). The underlying pathological changes that
lead to the endothelial cell dysfunction remain incom-
pletely understood, but poor placentation has been pro-
posed as a major contributory factor (2, 4, 5). As a result of
incomplete or failure of trophoblastic invasion of the
spiral arteries, placental ischemia results, leading to the
release of one or more factors that are responsible for the
damage of the maternal vascular endothelium (5, 6). The
normal process of trophoblastic invasion is complete by
20 weeks of gestation. Hence, the initiating placental
pathology should exist prior to this stage of pregnancy,
long before the onset of the clinical syndrome. Therefore,
it might be possible to develop new plasma/serum bio-
chemical markers for identifying subjects at increased risk
of developing preeclampsia.

We previously have shown that women with estab-
lished preeclampsia have a fivefold increase in circulating
fetal DNA concentrations in their plasma compared with
control pregnant subjects (7 ). However, it is unknown
whether this is a late phenomenon or whether it precedes
the onset of clinical symptoms and signs. In this study, we
aimed to test whether the abnormal increase in circulating
fetal DNA concentrations can be detected in susceptible
subjects before onset of the clinical disease.

Pregnant women attending the Department of Obstet-
rics and Gynecology, Prince of Wales Hospital, Hong
Kong were recruited with informed consent. The study
was approved by the Clinical Research Ethics Committee
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of The Chinese University of Hong Kong. Only singleton
pregnancies were included. The gestational ages of all
studied subjects were confirmed by early ultrasound
examination. Antecubital venous blood (10 mL) was col-
lected from each subject between 11 and 22 weeks of
gestation and placed immediately into EDTA tubes. After
centrifugation at 3000g for 20 min, the plasma samples
were collected into plain polypropylene tubes and stored
at 270 °C until further processing. All subjects were
followed until delivery, and all relevant clinical informa-
tion was recorded.

Of those who carried male fetuses and had blood
sampled, 18 subjects subsequently developed preeclamp-
sia as the only antenatal complication. The gestational age
at onset of clinical disease was 27.4–40.0 weeks. Pre-
eclampsia was defined essentially as described previously
(8 ), on the basis of a diastolic blood pressure .110 mmHg
on one occasion or .90 mmHg on two or more occasions
at least 4 h apart, with the presence of significant protein-
uria in subjects with no history of hypertension. Signifi-
cant proteinuria was defined as proteinuria .0.3 g/day or
$21 on dipstick testing in two clean-catch midstream
urine specimens collected at least 4 h apart. Another 33
subjects who carried male fetuses and had no antenatal
complication were randomly selected as the control
group. The mean gestational ages of the preeclamptic and
control subjects were 17.2 weeks (SD, 2.9 weeks) and 18.0
weeks (SD, 1.3 weeks), respectively. There was no statis-
tically significant difference in the gestational ages at
blood sampling between the preeclamptic and control
groups (P 5 0.23).

Plasma samples from these two groups were assayed
for circulating fetal DNA, using the SRY gene on the Y
chromosome as a marker, as described previously (7 ). The
sensitivity and precision of this assay have been reported
previously (7 ). As a control for the amplifiability of

plasma-extracted DNA, all samples were subjected to a
TaqMan assay for the b-globin gene on chromosome 11.
Samples from 10 pregnant subjects carrying female fe-
tuses during the second trimester were also assayed as
negative controls. The laboratory staff responsible for the
molecular analysis of the samples were unaware of the
clinical status of the subjects from whom the samples
were obtained.

Circulating fetal DNA was detected in all subjects
carrying male fetuses in both the preeclamptic and control
groups. Fig. 1 shows the plasma fetal DNA concentrations
of these two groups of subjects. The median fetal DNA
concentrations in preeclamptic and control pregnancies
were 41.9 genome-equivalents/mL (interquartile range,
25.8–62.8; range, 36.3–2375) and 22.0 genome-equiva-
lents/mL (interquartile range, 15.3–31.5; range, 4.25–300),
respectively. Fetal DNA concentrations were significantly
higher in preeclamptic than control pregnancies (Mann–
Whitney rank-sum test, P 5 0.001; U-statistic 5 340.5).
None of the plasma samples from the 10 women carrying
female fetuses had any SRY signal.

Positive amplification signals from the b-globin gene
were detected in all tested samples, thus confirming the
quality of the DNA samples. There was no significant
difference in the plasma concentrations of the b-globin
gene between the preeclamptic and control groups
(Mann–Whitney rank-sum test, P 5 0.16).

Our data indicate that increased concentrations of ma-
ternal plasma fetal DNA could be detected in susceptible
subjects before the onset of clinical presentation of pre-
eclampsia. The mechanisms producing this increase re-
quire further investigation. Previously, we proposed that
the possible pathways for maternal plasma fetal DNA
increase after the onset of preeclampsia include increased
liberation of fetal DNA into the maternal circulation
and/or reduced clearance of circulating DNA from ma-
ternal blood (7 ). The latter mechanism was proposed
because the kidney and liver have been suggested to be
the main organs for the removal of circulating DNA
(9, 10). Because pathologic changes involving the kidney
and liver are well described in preeclampsia, it is likely
that these processes might reduce the organs’ ability to
remove DNA from the circulation. However, this mecha-
nism is probably less likely to be important in the current
study cohort, who had no renal or liver function abnor-
malities before the onset of preeclampsia.

It is therefore reasonable to suggest that increased
liberation of fetal DNA into the maternal circulation is
likely to be the main reason for the early increase in
plasma fetal DNA concentrations in subjects who subse-
quently develop preeclampsia. Theoretically, increased
fetal DNA liberation could be secondary to increased
entry of fetal cells, such as trophoblasts (11, 12) and
erythroblasts (8 ), into the maternal circulation. In support
of this possibility is the recent demonstration of increased
fetal erythroblast trafficking into the circulation of women
who subsequently develop preeclampsia (13 ). Alterna-
tively, fetal DNA could be liberated directly from dying
cells in the placenta. In this regard, widespread apoptosis

Fig. 1. Mid-trimester maternal plasma fetal DNA concentrations in
preeclamptic (PET; n 5 18) and control (CON; n 5 33) subjects.
The y-axis is in the common logarithmic scale. The lines inside the boxes denote
the medians. The boxes mark the interval between the 25th and 75th percen-
tiles. The whiskers denote the interval between the 10th and 90th percentiles.
F indicates outliers outside the 5th and 95th percentiles.
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has been demonstrated in cytotrophoblasts obtained from
the placental beds of preeclamptic pregnancies (14 ). In-
creased incidence of apoptosis involving syncytiotropho-
blasts has also been reported in preeclampsia (15 ). Fur-
ther research on the correlation between fetal DNA
concentrations and incidence of placental apoptosis may
help to confirm this link.

The potential clinical implication of our findings is that
maternal plasma fetal DNA might be used as marker for
predicting preeclampsia. However, our data showed that
there was overlap in the fetal DNA concentrations be-
tween the preeclamptic and control groups. This implies
that a relatively low sensitivity and specificity would
result if maternal plasma fetal DNA measurement is used
as the sole predictor for preeclampsia. Thus, ROC curve
analysis (MedCalc 5.0) revealed that the best discrimina-
tion between the preeclamptic and control groups was
obtained at a fetal DNA concentration of 33.5 genome-
equivalents/mL. The sensitivity and specificity at this
cutoff concentration were 67% (95% confidence interval,
41–87%) and 82% (95% confidence interval, 65–93%),
respectively. The area under the ROC curve was 0.778
(SE 5 0.073; 95% confidence interval, 0.639–0.882). None-
theless, our data open up the possibility of predicting
preeclampsia using maternal plasma fetal DNA, espe-
cially when used with other biochemical markers such as
corticotropin-releasing hormone, a-fetoprotein, inhibin A,
and activin A (16, 17). In this regard, it is also important
to explore the use of fetal DNA markers outside the Y
chromosome so that this type of analysis can be extended
to pregnant women carrying female fetuses. Assays that
are potentially applicable in this capacity have recently
been described (18–20). Finally, our preliminary data
would serve to stimulate further large-scale studies to
explore the possible correlation of this new marker to the
severity of the disease.

This work is supported by the Earmarked Research
Grants Scheme from the Hong Kong Research Grants
Council (CUHK 4255/99M).
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Hoffman,1 and Kathy J. Helzlsouer1 (1 Department of Epide-
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The effects of repeated freeze-thaw cycles on concentra-
tions of various analytes in plasma or serum were of little
interest until the growth of plasma and serum banks
during the latter part of the 20th century. By 1996, the
number of such banks used primarily for cancer research
had grown to 115 (1 ). Many also exist for other purposes,
such as the WHO Serum Reference Banks (2 ) and banks
associated with cardiovascular studies such as the Multi-
ple Risk Factor Intervention Trial (MRFIT) and the Ath-
erosclerosis Risk in Communities (ARIC) Study (3, 4).
Although the need for repeated freezing and thawing of
samples can be minimized by storing banked specimens
in several small containers (5 ), it often is necessary to use
plasma or serum that has already undergone one or more
freeze-thaw cycles. When this occurs, reviewers of re-

Clinical Chemistry 47, No. 1, 2001 139


