
has been demonstrated in cytotrophoblasts obtained from
the placental beds of preeclamptic pregnancies (14 ). In-
creased incidence of apoptosis involving syncytiotropho-
blasts has also been reported in preeclampsia (15 ). Fur-
ther research on the correlation between fetal DNA
concentrations and incidence of placental apoptosis may
help to confirm this link.

The potential clinical implication of our findings is that
maternal plasma fetal DNA might be used as marker for
predicting preeclampsia. However, our data showed that
there was overlap in the fetal DNA concentrations be-
tween the preeclamptic and control groups. This implies
that a relatively low sensitivity and specificity would
result if maternal plasma fetal DNA measurement is used
as the sole predictor for preeclampsia. Thus, ROC curve
analysis (MedCalc 5.0) revealed that the best discrimina-
tion between the preeclamptic and control groups was
obtained at a fetal DNA concentration of 33.5 genome-
equivalents/mL. The sensitivity and specificity at this
cutoff concentration were 67% (95% confidence interval,
41–87%) and 82% (95% confidence interval, 65–93%),
respectively. The area under the ROC curve was 0.778
(SE 5 0.073; 95% confidence interval, 0.639–0.882). None-
theless, our data open up the possibility of predicting
preeclampsia using maternal plasma fetal DNA, espe-
cially when used with other biochemical markers such as
corticotropin-releasing hormone, a-fetoprotein, inhibin A,
and activin A (16, 17). In this regard, it is also important
to explore the use of fetal DNA markers outside the Y
chromosome so that this type of analysis can be extended
to pregnant women carrying female fetuses. Assays that
are potentially applicable in this capacity have recently
been described (18–20). Finally, our preliminary data
would serve to stimulate further large-scale studies to
explore the possible correlation of this new marker to the
severity of the disease.

This work is supported by the Earmarked Research
Grants Scheme from the Hong Kong Research Grants
Council (CUHK 4255/99M).
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Effects of Repeated Freeze-Thaw Cycles on Concentra-
tions of Cholesterol, Micronutrients, and Hormones in
Human Plasma and Serum, George W. Comstock,1* Alyce E.
Burke,1 Edward P. Norkus,2 Gary B. Gordon,3 Sandra C.
Hoffman,1 and Kathy J. Helzlsouer1 (1 Department of Epide-
miology, Johns Hopkins School of Public Health, Hager-
stown, MD 21742; 2 Department of Medical Research, Our
Lady of Mercy Medical Center, Bronx, NY 10470; 3 Searle,
Skokie, IL 60077; * address correspondence to this author
at: Johns Hopkins Training Center for Public Health
Research, 1302 Pennsylvania Ave., Hagerstown, MD 21742-
3197; fax 301-797-3669, e-mail gcomstock@mindspring.com)

The effects of repeated freeze-thaw cycles on concentra-
tions of various analytes in plasma or serum were of little
interest until the growth of plasma and serum banks
during the latter part of the 20th century. By 1996, the
number of such banks used primarily for cancer research
had grown to 115 (1 ). Many also exist for other purposes,
such as the WHO Serum Reference Banks (2 ) and banks
associated with cardiovascular studies such as the Multi-
ple Risk Factor Intervention Trial (MRFIT) and the Ath-
erosclerosis Risk in Communities (ARIC) Study (3, 4).
Although the need for repeated freezing and thawing of
samples can be minimized by storing banked specimens
in several small containers (5 ), it often is necessary to use
plasma or serum that has already undergone one or more
freeze-thaw cycles. When this occurs, reviewers of re-
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search protocols or manuscripts may question the validity
of data obtained from these specimens.

The scientific literature provides few answers to such
questions. Medline contains no appropriate key word or
phrase for searching; comments on the effects of freeze-
thaw cycles often are limited to a few sentences in
publications that focus on stability during long-term
storage or on assay methodology. The present study was
designed to add information to this sparse literature.

In 1991, 10 healthy adult volunteers, 5 men and 5
women, each donated 120 mL of blood. The purpose of
the study was explained to each person along with the
risks and lack of individual benefit. Approval of the study
was granted by the Committee on Human Volunteers of
the Johns Hopkins School of Hygiene and Public Health
before study initiation.

Blood was collected into three 20-mL Vacutainer Tubes
containing 286 USP units of sodium heparin (cat. no. 6406;
Becton Dickinson) to obtain plasma, and into four 15-mL
plain Vacutainer Tubes to obtain serum. The three plasma
samples and four serum samples were pooled for each
donor. Each of these 10 plasma and serum donor pools
was divided into 7 primary aliquots, 2 for baseline assays
after one freeze-thaw cycle, and 1 each for the assays after
2, 3, 4, 6, and 10 freeze-thaw cycles. From each primary
plasma aliquot, five secondary aliquots were prepared for
assays of ascorbic acid, cholesterol, dehydroepiandros-
terone and dehydroepiandrosterone sulfate, other hor-
mones, and micronutrients. Each primary serum aliquot
was similarly divided except that no ascorbic acid assays
were done on serum. Plasma and serum samples were
kept in sterile flasks set in ice-water except during the
actual fluid transfers. For the ascorbic acid assays, 0.5 mL
of freshly prepared 100 g/L metaphosphoric acid was
added to 0.5 mL of plasma before freezing; the mixture
was then immediately frozen at 270 °C. All aliquoting
and thawing were done under dim yellow light.

Secondary aliquots for freeze-thaw cycle 2 were re-
moved from the freezer, thawed once in cold water,
allowed to stand at room temperature for 30 min, and
refrozen at 270 °C. These samples were not thawed again
until the time of assay, thereby completing the second
freeze-thaw cycle. Samples for freeze-thaw cycle 3 were
thawed as above, refrozen at 270 °C, thawed as above
again, and then kept frozen until thawed for assay. This
system of thawing and refreezing was repeated so that
freeze-thaw cycle 4 had its fourth freeze-thaw cycle com-
pleted at the time of assay. These procedures were con-
tinued for freeze-thaw cycles 6 and 10.

All specimens remained frozen in insulated containers
with dry ice during shipment to the assay laboratories. All
specimens were assayed in the random order assigned
before shipment. This procedure ensured that the order of
assaying was random with respect to both the donor of
the specimens and to the freeze-thaw cycle.

Ascorbic acid assays were performed with 2,4-dinitro-
phenylhydrazine as chromogen (6 ). Other micronutrients
(retinol, total carotenoids, a-carotene, b-carotene, cryptox-
anthin, lycopene, lutein, a-tocopherol, and g-tocopherol)

were assayed by reversed-phase HPLC (7 ). Cholesterol
concentrations were determined enzymatically (8 ). As-
says for dehydroepiandrosterone and its sulfate were
performed by RIA (Wien Laboratories, Succasunna, NJ)
(9 ). The procedure was that suggested by the manufac-
turer except that dehydroepiandrosterone was extracted
with a 1:1 mixture (by volume) of dichloromethane and
hexane.

For males, the hormones for assay were estrone, estra-
diol, testosterone, and sex hormone-binding globulin
(SHBG); for females, androstenedione, follicle-stimulating
hormone, luteinizing hormone, progesterone, and SHBG
were determined. In male serum, estrone and estradiol
were measured by RIA after extraction and Celite chro-
matography (10 ). Testosterone was measured by RIA
using a method from DPC. SHBG was measured using an
immunoradiometric method from Orion. In female se-
rum, androsterone and progesterone were measured by
RIA using methods from ICN.

The results for duplicate aliquots that had undergone
only one freeze-thaw cycle were used to estimate impre-
cision (as CVs) for the individual assays. The mean value
of the two concentrations for each analyte was used as the
cycle 1 value. For each analyte, the linear regression
equation (y 5 a 1 bx) for mean analyte concentrations (y)
on the number (x) of freeze-thaw cycles was calculated.
The average amount of change per cycle (b) was divided
by the estimated value before any freezing (a), and the
result was expressed as a percentage of the calculated
prefreezing value.

The imprecision (CV) for plasma and serum was simi-
lar. For cholesterol and the micronutrients, the median CV
was 7.4%, with a range of 1.2% (serum cholesterol) to 19%
(plasma a-carotene). For hormones, the variability was
greater. The median CV was 14% and the range was 2.5%
(androstenedione in serum) to 58% (progesterone in se-
rum). For seven analytes, CVs were .15%: progesterone
in plasma and serum (41% and 58%, respectively); estra-
diol in plasma and serum (17% and 39%); estrone in
plasma and serum (27% and 22%); and dehydroepiandro-
sterone in plasma (17%).

The mean change associated with each freeze-thaw
cycle (and its accompanying 30-min exposure to room
temperature) was ,4% of the estimated prefreeze concen-
tration for all analytes and ,2% for nearly all of them
(Table 1). Five analytes had changes per cycle of 2–4%. All
of these five were hormones: estrone in plasma and
serum; estradiol in serum; and SHBG and dehydroepi-
androsterone sulfate in plasma. In general, there was a
slight tendency for concentrations to decrease with each
successive freeze-thaw cycle and for these changes to be
least for the first three cycles. Analyte concentrations in
serum were somewhat less likely to be affected by freez-
ing and thawing than concentrations in plasma.

In this study, three cycles of freezing and thawing had
almost no effect on concentrations of cholesterol, micro-
nutrients, and most of the hormones investigated (data
not shown). For estrone, estradiol, testosterone, and
SHBG, there was appreciable variation within the first

140 Technical Briefs



three cycles, but the degree of variability was consider-
ably less than the respective CVs. Although there were
greater losses after 6 or 10 cycles for a few other analytes,
these were too small to have a meaningful effect on
results.

With one exception, other studies agree with these
findings. With respect to cholesterol, serum specimens
from 10 baboons were subjected to 10 freeze-thaw cycles
(11 ). The results indicated “a stable serum cholesterol
during repeated freezing-thawing”.

In a report on assay methodology, Driskell et al. (12 )
stated that “Vitamins A and E in serum were found to be
stable to freezing and thawing (seventeen freezing and
thawing cycles over a period of five weeks)”. Brioch et al.
(13 ) concluded that eight freezing and thawing cycles of
hypercarotenemic serum made “no significant differences
in the levels of carotenoids or retinyl palmitate”. In a
study on the stability of vitamin E, Gunter et al. (14 )
reported that two samples stored at 270 °C for 3 months
had losses of 13% and 21% after the fifth cycle. Regression
analysis of data reported by Nierenberg (15 ) showed that
after seven freeze-thaw cycles of a single specimen,

plasma concentrations of b-carotene decreased by 0.3% of
the estimated baseline value per cycle. A more compre-
hensive study by Hsing et al. (16 ) used 15 aliquots of
pooled sera. After four freeze-thaw cycles, no changes in
the concentrations of retinol, total carotenoids, b-carotene,
lycopene, or total tocopherols were .0.3% of the esti-
mated prefreezing value.

Hsing et al. (16 ) also looked at changes in serum
concentrations of several hormones after three freeze-
thaw cycles of five pooled specimens. The estimated
change per cycle was 0.7% for testosterone, 1.4% for
luteinizing hormone, and 3% for follicle-stimulating hor-
mone. Wickings and Nieschlag (17 ) assayed four aliquots
of plasma after 33 freeze-thaw cycles. They concluded that
“Repeated freezing and thawing of plasma samples does
not affect the plasma concentrations of T (testosterone)
and Adione (androstenedione)”.

On the basis of previous reports and the results of this
study, we believe that repeated freezing to 270 °C and
thawing has no meaningful effects on the plasma and
serum concentrations of a considerable number of micro-
nutrients and hormones.
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47503 from the National Cancer Institute, Research Grant
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Research Career Award HL 21670 from the National
Heart, Lung, and Blood Institute (G.W.C.). We are grate-
ful to Dr. Christopher Longcope, C. Franz, M.A. Grigg,
and C. Bukowski for the hormone assays, and to Dr. P.
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Lipoprotein Analytical Laboratory for the cholesterol as-
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