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ABSTRACT
FSH has a key role in the development and function of the repro-

ductive system and is widely used both diagnostically and therapeu-
tically in developmental and reproductive medicine. The accurate
measurement of FSH levels, in patients for diagnosis and monitoring
and in therapeutic preparations for clinical use, is essential for safe
and successful treatment. Historically, FSH was defined on the basis
of classical in vivo endocrine activity, and early therapeutic prepa-
rations were calibrated using in vivo bioassays. There was early
recognition that reference preparations were required for calibration
if the results from different laboratories were to be comparable. In

response to the perceived need, the World Health Organization es-
tablished the first standard for such preparations in 1959. Subsequent
developments in biotechnology have led to recognition that there is no
single molecule that can be uniquely defined as FSH, and that FSH can
induce a range of biological activities. Several highly purified standards
for FSH are now available, but discontinuity and heterogeneity of esti-
mates of FSH activity in terms of these standards made using in vitro
assays and binding assays have been noted. It is thus essential that any
measurement of FSH include specification both of the standard with
which the measured FSH is compared and the assay method used for
that comparison. (Endocrine Reviews 21: 5–22, 2000)
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I. Introduction

FSH is a member of the glycoprotein hormone family that
has a central and essential role in reproduction. FSH

determination is fundamental to elucidating reproductive

physiology, regulating fertility, and diagnosing and treating
disorders of reproduction. FSH exists in many different mo-
lecular forms, which may have different reactivities both in
physiological systems and in different assay types. Thus FSH
is not a single entity but is a heterogeneous population of
different forms, which changes under different physiological
and pathological situations. Moreover, FSH exerts a number
of biological effects that have served as the basis for the
different types of assay that have been developed for its
estimation. Use of a particular assay depends upon the pur-
pose for which the measurement is being made, the nature
of the sample that is being analyzed, and the availability of
different assay types. Thus, the “true” estimation of FSH,
each form of which may react differently in the different
assay systems used for estimation, is an ideal that will not be
readily achieved.

This review considers how FSH is defined either in terms
of its biological activity or in molecular terms, summarizes
the different assay formats developed for its determination,
and describes how the properties of FSH may influence its
determination and hence the conclusions that are drawn
from such determinations. Although many of the principles
that apply to FSH apply to all members of the glycoprotein
hormone family (i.e., FSH, TSH, LH, and CG) and to other
clinically important glycoproteins such as erythropoietin,
there have been particular problems associated with setting
up international standards for calibration of FSH assays.

II. Clinical Importance of FSH

A. Therapeutic uses

Preparations derived from human menopausal urine
[menotrophin, human menopausal gonadotropin (hMG)]
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and containing FSH have been in clinical use since the 1960s
(for historical review see Ref. 1). Advances in biotechnology
have enabled industrial production of therapeutic grade uri-
nary FSH (urofollitropin) and recombinant DNA (rDNA)-
derived human FSH with high specific activity and minimal
contamination by non-FSH materials. The properties of hMG
and urofollitropin are defined by pharmacopeial mono-
graphs (e.g., Ref. 2), as are the requirements of the (in vivo)
bioassays used to test their potency.

Therapeutic preparations of FSH are widely used in the
treatment of infertility (Table 1). The principles and practices
for the gonadotrophic manipulation of the human ovary
have been reviewed (3). Their use in assisted reproduction
technology can be divided into three categories:

1. Induction of ovulation when a single healthy oocyte is
required.

2. Induction of multiple ovulation or superovulation to
maximize efficiency when assisted reproductive technolo-
gies are used that allow replacement of a fixed number of
embryos.

3. Stimulation of spermatogenesis.
Treatment of female infertility is a situation in which pa-

tients are otherwise generally healthy and common disorders
of reproduction such as anovulatory infertility can be treated
in a safe and effective way (4). However, there is a narrow
dose-range for use of FSH between a threshold level required
to stimulate growth of a follicle(s) and the maximal dose
(ceiling) above which overstimulation can occur (5). Thus
there is a significant risk to health due to the iatrogenic
induction of ovarian hyperstimulation syndrome or multiple
pregnancies. Different physiological and clinical states can
affect the levels of the threshold and ceiling for FSH treat-
ment. Thus careful dose adjustment and monitoring of FSH
levels and ovarian responses are required, particularly for
patients with polycystic ovary syndrome (e.g., Ref. 6). This
cannot be achieved without accurate and reproducible cal-
ibration of therapeutic products. However, the end point
used for patient response to therapeutic preparations should
also be carefully considered.

B. Diagnostic use

The measurement of FSH in the circulation is widely em-
ployed in the diagnosis of disorders of reproduction and

development (Table 2). In general, immunoassays are used
for these measurements because of their practical advan-
tages. A disadvantage is that immunoassays may not pro-
vide information about the biological activity of the FSH
measured, although this may be less relevant in routine clin-
ical management than in detailed studies.

The primary use of FSH measurements is for assessment
of gonadal function. Through classical endocrine feedback
pathways, an elevated level of FSH indicates reduced go-
nadal function or gonadal failure, whereas a normal serum
concentration of FSH suggests normal gonadal function. A
low serum FSH may indicate a problem at the level of the
hypothalamus or pituitary.

A measurement of serum FSH, with measurement of LH
and either estradiol or testosterone, may be helpful in chil-
dren with suspected premature puberty or in cases of de-
layed puberty, particularly as the application of sensitive
assay methodologies permits detection of hormonal changes
before clinical changes of puberty are observed (7). FSH
measurement is indicated in men with azoospermia or severe
oligospermia to help determine the degree to which the prob-
lem is due to gonadal failure (8).

Ovarian reserve, or the total number of remaining oocytes
within the ovary, declines with ovarian age, but this does not
always equate with the age of the woman. A baseline mea-
surement of serum FSH concentration, usually on day 3 of the
menstrual cycle, is a fairly good predictor of ovarian reserve
in women of reproductive years (9). A fluctuating baseline
FSH level is indicative of compromised ovarian function. The
picture is further enhanced if measurement of FSH is com-
bined with serum estradiol and inhibin (reviewed in Ref. 10).
In an irregular menstrual cycle it can be difficult to time
collection of samples correctly, and therefore more than one
sample may have to be taken, often in combination with an
ultrasound scan of the ovaries, to help determine the stage
in the cycle (11–14). Measurement of FSH is also helpful in
determining the presence of common disorders of reproduc-
tion such as polycystic ovary syndrome, when classically the
serum LH concentration is elevated, while FSH is usually
normal (15). A single measurement of FSH is not predictive
of the timing of menopause and is not usually recommended
for this purpose, although it may be useful in developing a
differential diagnosis to exclude other causes (endocarditis

TABLE 1. Common causes of infertility and treatments that require FSH

Cause Treatment

Female infertility
Ovulatory failure (oligo- or amenorrhea) Ovulation induction
Primary ovarian failure Superovulation followed by IVF using donated oocytes
Tubal/pelvic damagea Superovulation and IVF
Endometriosisa Superovulation and IVF, GIFT, IUI
Cervical mucus dysfunction or defects Superovulation and IUI, GIFT, IVF, ZIFT
Antisperm antibodies Superovulation and IVF, IUI
Idiopathic infertility Superovulation and IVF, GIFT, IUI

Male infertility
Sperm dysfunction IVF, ICSI
Azoospermia Stimulation of spermatogenesis with FSH if due to

hypogonadotrophic hypogonadism or pituitary failure

Abbreviations: IVF, In vitro fertilization; GIFT, Gamete intra-fallopian tube transfer; IUI, Intra-uterine insemination; ICSI, Intra-cyto-
plasmic sperm injection; ZIFT, Zygote intra-fallopian tube transfer.

a May be treated surgically in appropriate cases.
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or pheochromocytoma for example) of symptoms such as hot
flushes. Although various studies have been performed to
characterize the perimenopausal status (16, 17), the practical
use of FSH measurement is in the prediction of ovarian
response to stimulation in the context of assisted reproduc-
tion.

Significant between-assay heterogeneity is observable for
FSH assays. However, it is not clear whether this may have
a significant effect on diagnoses based on results obtained
from different assay systems. In the United Kingdom a large
clinical chemistry laboratory may perform several thousand
FSH assays per year. The majority will be for investigations
of menopausal status, diagnoses of infertility/amenorrhea,
and infertility in men (see above). Essentially, the clinician
will wish to detect gross changes in FSH levels from the
normal ranges, and it is it unlikely that variations between
assays will mask gross changes in FSH concentration asso-
ciated with primary gonadal failure and hypogonadotrophic
hypogonadism. The change to more acidic forms of FSH at
menopause may be an example of a qualitative assay pro-
viding diagnostically useful information since a change in
isoform composition may precede the observed increase in
levels of FSH associated with the menopause. The levels of
FSH measured by immunoassay at this time could also be
affected by a change in isoform profile relating to the selec-
tivity of the assay system used. However, in some circum-
stances, minor variations between assays could have a more
profound effect, e.g., partial gonadal failure/resistant ovary
syndrome. Intensive investigations of hormonal levels have
revealed underlying gonadotropin disturbances and imbal-
ances in polycystic ovary syndrome (18) and subtle changes
relating to idiopathic infertility (19). The ratio of LH to FSH
has been proposed as a good predictor of ovarian hyper-
stimulation syndrome (20). In such cases, particularly where
a ratio of two measurements is made, it is important to
maintain continuity of unitage between estimates derived
from different assays over a period of time and thus from one
standard preparation to the next.

III. Definition of FSH

The history of the elucidation of FSH has been briefly
reviewed (21). The salient features are that gonadotropins, or
gonadotrophic principles as they were originally described,
were first identified and defined in terms of their biological
activities and that the assays developed for gonadotropins
were based on classical endocrine principles. These early

assays had two main drawbacks (21). First, there was no
assay specific for FSH, and second, quantification and hence
between-laboratory comparisons were made difficult by a
lack of standardization. Thus, the early assays measured a
number of different biological responses to the different go-
nadotrophic principles and, furthermore, the extracts which
defined gonadotrophic activity were composed of mixtures
of the gonadotrophic principles.

After further scientific progress the structure of the gly-
coproteins for a variety of species in terms of amino acid
sequence (22–29), carbohydrate composition (30–33), and
gene sequences (e.g., Refs. 34–36) have been determined and
extensively reviewed (37–42). Human FSH can be defined in
molecular terms as a heterodimeric glycoprotein hormone
consisting of two noncovalently linked subunits designated
a and b, which consist of 92 amino acids and 111 amino acids,
respectively, and which are products of different genes. Each
subunit has two N-linked glycosylation sites, which are on
Asn 52 and Asn 78 for the a-subunit and Asn 7 and Asn 24
for the b-subunit and which are essential for expression of
FSH bioactivity.

IV. Function of FSH

The biological actions of FSH can be summarized as fol-
lows; in the male, FSH, in combination with testosterone
(which is under the control of LH), is required for the initi-
ation and maintenance of qualitatively and quantitatively
normal spermatogenesis (reviewed in Ref. 43). Although re-
cent data in transgenic mice suggest that FSH appears to be
not essential for male fertility (44), spermatogenesis is not
completely normal in the absence of FSH and, furthermore,
the requirement for FSH is more critical in primates than in
rodents.

In the female FSH is necessary for the selection and growth
of ovarian follicles and for the production of estrogens from
androgen substrates. The gonadotrophic effects of FSH may
be subserved by a number of intermediaries (reviewed in
Ref. 45) that form part of the cellular and tissue (e.g., Ref. 46)
response to FSH stimulation culminating in ovulation. Such
cellular responses illustrate the complex nature of FSH since
they indicate that FSH activity has many components, i.e.,
FSH is a growth factor or tropic hormone, a secretagogue,
and a modulator of cellular development (e.g., Ref. 47). It is
generally thought that FSH exerts most of its intracellular
actions via the cAMP-mediated signaling pathway, although

TABLE 2. Summary of clinical situations where FSH determinations are useful or are commonly requested

Clinical condition Comments

Anovulatory infertility (oligo/amenorrhea) To help determine whether cause is pituitary or gonadal in origin and to aid
diagnosis of conditions such as polycystic ovary syndrome

Suspected premature puberty In addition to steroid hormone levels
Delayed puberty In addition to steroid hormone levels
Azoospermia/severe oligospermia To differentiate pituitary and gonadal causes
Ovarian reserve As a biological marker for the number of releasable oocytes; may be enhanced by

measurements of inhibin and ovarian ultrasound to accurately stage the timing
of the sample

Menopausal status A frequently requested test; FSH is not a good marker for timing of the
menopause or of perimenopausal state
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FSH may also utilize other signal transduction pathways
such as Ca11 (48).

The biological activity of FSH is the sum of a complex
combination of processes: release from the pituitary, survival
in the circulation, transport to the site of action (i.e., the
gonad), binding to the receptor, and activation of signal
transduction pathways. These processes may be modified by
other factors that may affect release (pulse frequency or am-
plitude), clearance from the circulation, receptor binding and
desensitization, cellular responsiveness, and modifications
to the hormone during circulation such as neuraminidase
action.

A. Structure/function relationships

1. Amino acid sequence. The a- and b-subunits of the gonad-
otropins are noncovalently linked but their individual con-
formations are determined by intramolecular disulfide
bonds. Recently, glycoprotein hormones have been identi-
fied as members of the cysteine knot family of growth factors
(49, 50). The disulfide bonds of the cysteine knot of the
a-subunit have been found to be critical for heterodimer
formation and/or secretion (51, 52), and conformational
changes that occur in association with different hormone-
specific b-subunits are assumed therefore to occur outside
this essential core region of the a-subunit molecule.

The amino acid sequence 48QKTCT52 of the b-subunit ap-
pears to be essential for formation of the FSH heterodimer
(53), and the disulfide bonds 7–31 and 59–87 are important
for heterodimer formation of LH but not of human (h)CG and
hFSH (54). Further studies showed that the residues Phe33,
Arg35 and Arg42-Ser43-Lys44 are essential for receptor binding
of hCG and hTSH but not for hFSH (55), whereas His90-Lys91

of the a-subunit is essential for binding of FSH to its receptor
but not for binding of hCG to the LH/hCG receptor (56, 57).
Interestingly, this sequence is required for stimulation of
cAMP by both hormones. Receptor binding sites have been
identified within the 93–99 amino acid sequence of the C-
terminal region of the FSH b-subunit (58). In the hCG a-sub-
unit the sequence between amino acids 33–45 contains sev-
eral residues that are essential for binding to the b-subunit
and some of which are involved in receptor binding (59). The
hormonal specificity of each subunit is thought to reside in
a determinant loop formed between residues Cys 93 and Cys
100 of CG b-subunit and the equivalent sequences of the
other b-subunits (60). This loop has been shown to form a
seat belt around the a-subunit in the heterodimer (49, 50).

2. Oligosaccharides. The functions of the oligosaccharides have
been investigated in two main ways. Earlier studies made use
of chemical (61–63) or enzymatic alterations (64, 65) to the
glycan moieties. The enzymatic approach allows investiga-
tion of the function of each sugar in the glycan by using
sequential exoglycosidases to expose each sugar in turn (66),
whereas chemical methods rapidly remove key sugar groups
leaving a core structure intact. One possible drawback of
chemical methods is that the treatment may alter the
polypeptide chain in some way. More recently, molecular
biology techniques have been used to produce molecules that
were not glycosylated at individual sites by induction of

mutations in the polypeptide backbone, which prevent gly-
cosylation (67). Site-directed mutagenesis has the advantage
of permitting investigation of the role of individual glyco-
sylation sites but also has the effect of removing the entire
glycan structure and does not therefore allow investigation
of the effect of sugar heterogeneity at any one site. A com-
bination of site-directed mutagenesis and enzymatic or
chemical modification may address this issue. The available
evidence suggests that the protein structure was similar in
intact and chemically treated preparations (62) and that the
thermal stability of chemically deglycosylated hCG may be
enhanced compared with the native hormone (68).

Hormones with deglycosylated a-subunit are antagonists
of the action of intact hormones. Oligosaccharides on the
a-subunit are required for signal transduction, in particular
a52 (69), intracellular stability, and association with the
b-subunit (70). Those on the b-subunit are required for
b-subunit folding (71, 72) and for correct disulfide bond
formation (73).

Although substantial work has been done, the complexi-
ties of the situation arising from variations of glycosyl con-
tent at each of the four possible glycosylation sites and the
interactions of these structural features with biological sys-
tems are still incompletely understood.

B. Relationship of FSH structure to physiology

FSH is heterogeneous and the pattern of FSH forms
changes with different physiological situations (reviewed in
Refs. 74 and 75). Variability in the sugar chains is the major
cause of heterogeneity in the gonadotropins, although mi-
croheterogeneity exists in the polypeptide chain.

An overall change in FSH isoform pattern resulting in a
more basic composition has been observed in the middle of
the menstrual cycle (76), in response to a GnRH challenge
during puberty (77, 78), and in girls and young women
compared with boys and men (79). In women, more acidic
forms of FSH appear after the menopause (79, 80), the longer
half-life of which may contribute to the increased serum FSH
concentrations observed.

The profile of observed isoforms has also been shown to
change with various hormonal treatments in humans and
experimental animals and cultured rat pituitary cells (e.g.,
Ref. 81). The changing patterns of isoforms observed under
different conditions in humans (79–85) and other species
(86–88) have been described. These data strongly implicate
a role for sex steroids in controlling the isoform profile of FSH
in women; in contrast, in men (82) and male rats (87) the
evidence for androgens exerting the same effect is not as
strong, and other factors such as inhibin are also implicated
in controlling both the isoform profile and the amount of FSH
secreted. The association of particular isoform patterns or
molecular forms of FSH to particular actions or cellular and
physiological responses is difficult to make because of the
pleiotropic actions of FSH and the complexity of its molec-
ular structure.

C. Biological clearance

Data from in vivo bioassays suggest that one of the major
factors that controls FSH action is the relative rate of clear-
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ance of different isoforms. The main mechanism of clearance
of glycoproteins appears to be the hepatic route (89) or the
renal route (90).

1. Hepatic clearance. Terminal sialic acid and sulfate groups
are important for regulating biological half-life of glycopro-
teins (91). Subterminal galactose residues are recognized by
the hepatic asialoglycoprotein receptor (92), and a sulfated
glycoprotein receptor (93) is responsible for rapid clearance
of sulfated glycoprotein hormones such as LH and TSH (94,
95). It is likely that molecules with a low sialic acid content
but whose sugar structures are recognized by the asialogly-
coprotein receptor may be cleared by this mechanism al-
though hCG does not appear to be desialylated in vivo to
render it a substrate for hepatic clearance (96).

Cellular uptake of asialoglycoproteins can be investigated
in vitro by use of cultured liver cells or cell lines (97–99). There
are, however, differences in the uptake of asialoglycopro-
teins by liver cells from different species (98) and between
hormone molecules of natural or synthetic origin (95). These
differences could contribute to differences in potency ob-
served between natural and recombinant molecules (95) and
in different situations (e.g., pharmacopeial in vivo bioassay vs.
clinical use of therapeutic preparations). With further devel-
opment this model might be used to assess hepatic clearance
when estimating FSH activity in serum or in therapeutic
products in vitro.

2. Renal clearance. The renal route results in excretion of
biologically active gonadotropins in the urine (100) or in
degradation (90). Radiolabeled FSH and deglycosylated FSH
(which is cleared from the circulation faster than intact FSH)
appear to be cleared largely through the renal route rather
than the hepatic route (101). Excretion may occur after fil-
tration, which may be regulated by the surface charge and
relative molecular size of the molecule (102). The loss of
negative charge caused by removal of terminal sialic acids
may therefore enhance renal filtration of desialylated mol-
ecules. Cellular uptake and degradation (90) may also be
influenced by surface charge or by recognition by cell surface
receptors or may require a cellular uptake mechanism that
could be mediated by a mechanism similar to the transen-
dothelial trafficking described previously (103). There is
good evidence that the b-core of hCG is produced during
elimination of the hCG molecule through the kidney (104). It
would be difficult to model the renal route and to include
models of both renal and hepatic routes of biological clear-
ance into routine in vitro assays.

V. Metrological Considerations and the Need for
Standards

The process of discovering that a property is “measurable”
and setting up a procedure for measuring it depends entirely
upon experimental inquiry, and is an important part of ex-
perimental science (105). More specifically, measurement of
a quantity consists of ascertaining its ratio to another fixed
quantity of the same kind, known as the “unit” of that quan-
tity. Any unit is an abstract concept and cannot be used as
a basis of measurement until it has been defined in one of two

ways: by reference to an arbitrary material standard, or by
reference to a natural phenomenon. Thus, an essential re-
quirement for any meaningful measurement is definition of
the “quantity” being measured, of the “units” in which it is
measured, and of the process by which the measurement is
carried out. The need for metrological definition in the con-
text of assays has been discussed both generally (106, 107)
and in the context of specific types of assay (108, 109). Failure
to define clearly what is meant by “measurement” of FSH (or
of hormones more generally) can be the source of ambiguity
and apparent inconsistencies.

The main assumption underlying a valid determination of
any measurement is that the quantity to be measured and the
standard with which it is compared are “of the same kind”.
This requirement and its implications for bioassays have
been extensively discussed (110–113). Although FSH was
initially defined in terms of its ability to produce specific
biological effects, it is now known both that materials with
different molecular structures can produce these effects, and
that there is no unique molecule that can be defined as FSH
(Sections III and IV). Thus, definition of the “quantity to be
measured” and provision of a sample “of the same kind” are
not simple. In certain cases, the ability to produce specific
effects in a biological system may still serve as the basis for
definition of FSH. Biological responses, while they may be
used to provide a definition of FSH, are not capable of de-
fining the “units” of FSH, or indeed of any other hormone,
as was recognized early in the study of such materials (114).
Nevertheless, biological responses may serve as the basis of
a measuring system for “FSH” in the form of bioassays.

The structure of an assay involves a subject (e.g., an animal
or a cell culture in the case of a bioassay, or an antibody-
coated well of a microtiter plate in the case of an immuno-
assay) that responds in some measurable way to an appli-
cation of a defined amount of the hormone. The relationship
between the response and the amount or dose of hormone
(the dose-response relationship) will be subject to random
variations arising from the variations between replicate sub-
jects. The availability of a material standard of the hormone
with a defined unitage permits the application of “known”
amounts of the standard to an array of subjects, while defined
amounts of the substance to be measured are applied to a
similar array of subjects. Subject to certain assumptions
about validity, the comparison of the dose-response rela-
tionships for the standard and the unknown to be measured
then gives a value of the FSH unitage to the substance being
measured (110, 113).

Measurements of FSH are required for a variety of reasons
(Section II). The definition of “FSH,” its measurable property
(e.g., biological activity), and the corresponding measure-
ment process (e.g., bioassay) must be related to the purpose
for which the measurement is required.

One of the more important requirements for measurement
of FSH is to determine the potency of therapeutic products.
For this purpose, the quantity to be measured is the product,
which may be defined by its production process and various
physical or chemical specifications. The property to be mea-
sured is the capability of this quantity of material to produce
a biological effect in patients. The units in terms of which this
property is measured are International Units defined by ref-
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erence to the International Standard, a material reference,
and the measurement process is a pharmacopeially defined
in vivo bioassay (Section VI.A).

“Measurements of FSH” are also made for samples of
biological fluids from patients. The measuring system most
commonly used is an immunoassay, in which case the prop-
erty being measured is the binding of particular molecular
forms. However, the molecular forms bound are seldom well
defined (Section VI.B).

A. Standards for FSH

The First International Reference Preparation (IRP) of
hMG was established in 1959, in response to a request by the
International Federation of Gynaecology and Obstetrics,
with no defined unitage, and was described as “ampoules
containing 22 mg of dried active principle from urine of
post-menopausal women” (115). This early preparation was
found to be toxic in some assays, and a second preparation
was evaluated by international collaborative study and be-
came the second IRP (116). Subsequently, international stan-
dards for hMGs were established by the World Health Or-
ganization (WHO) and were calibrated by bioassay in terms
of the second IRP (117). IRPs derived from pituitary extracts
were also calibrated by bioassay in terms of the second IRP
for menopausal gonadotropins. The unitage of biological
activity assigned to the second IRP has served as the basis for
definition of FSH activity of all subsequent WHO interna-
tional standards and reference preparations (Table 3). The
principles, use, and availability of standards for gonadotro-
pins have been reviewed (118, 119) and have been recently
updated (120).

These standards have been of service to the scientific and
medical communities, although some problems have been
noted. The change from use of relatively impure prepara-
tions to use of purified preparations as therapeutic products
was followed by some studies indicating that on a unit-for-
unit basis recombinant preparations appeared to be more

potent clinically than their urinary counterparts (121), al-
though such findings were not universal (e.g., Ref. 122). Thus,
international standards of the purified preparations have
been prepared and calibrated (123), and at present thera-
peutic preparations of gonadotropins are calibrated in terms
of the appropriate international standard (Table 3) using the
pharmacopeial in vivo bioassay.

There is at present no single standard that may be con-
sidered appropriate for general use in in vitro bioassays and
immunoassays. Although some of the international stan-
dards have been used for these assays and may help to
decrease interassay variation (124), significant interassay het-
erogeneity of estimates has been observed in two interna-
tional collaborative studies (123, 125, 126). Furthermore, dif-
ferent international standards have been found to have
different molecular compositions (127, 128) demonstrating
the difficulty of preparing candidate standard materials from
natural sources with reproducible properties. The possibility
of standardization of the assay systems has been considered
(124, 129–132). However, the difficulties inherent in stan-
dardization of bioassays have long been recognized (111),
and similar considerations apply to immunoassays.

B. Future prospects for FSH standards

Further developments arising from the application of bio-
technology may lead to the generation of purified prepara-
tions of defined but differing isoform composition or new
molecules with therapeutic potential (133–135), which may
require new assays and new standard preparations for their
calibration. High purity preparations can be analyzed using
physicochemical techniques that were not applicable to hMG
preparations. At present, however, therapeutic materials, in-
cluding those derived from rDNA sources, are calibrated by
in vivo bioassay (see Section VI.A).

If immunoassay or lectin-antibody systems can be devel-
oped that select for certain forms of FSH such as acidic forms,
then it may be appropriate to prepare standards of differing

TABLE 3. World Health Organization International Reference Preparations (IRP) and International Standards (IS) for FSH

Preparation Code Source
Calibration

Potency
(IU FSH/ampoule)a

Standard

1st IRP for menotrophinsb hMG 24 Dried active principle from urine
of postmenopausal women

22 mg N.A.

2nd IRP for menotrophinsb Pergonal 23 40 (by definition) 1st IRP for menotrophins
1st IS for menotrophinsb 70/45 Pergonal batch P49 E229C 54 2nd IRP for menotrophins
2nd IS for menotrophinsb 71/223 Pergonal batch P49 E229C 54 2nd IRP for menotrophins
3rd IS for menotrophinsb 71/264 Pergonal batch P49 E229C 54 2nd IRP for menotrophins
1st IS for urofollitropin 92/512 Urofollitropin 121 2nd IS for menotrophins
1st IS for rDNA-derived hFSH 92/642 RDNA-derived hFSH 138 2nd IS for menotrophins
1st IRP for FSH and LH pitu-

itaryb
69/104 Pituitary extract FSH/LH LER 907 10 2nd IRP for menotrophins

2nd IRP for FSH and LH pitu-
itaryb

78/549 Pituitary FSH/LH LER 907 10 1st IRP for FSH and LH pituitary

Interim reference preparation 94/632 Pituitary FSH/LH LER 907 20 2nd IRP for FSH and LH pituitary
1st IS for FSH, human pituitary 83/575 Highly purified pituitary FSH 80 2nd IRP for FSH and LH pituitary
1st IS for FSH, rDNA for immu-

noassay
92/510 RDNA-derived hFSH 60 2nd IRP for FSH and LH pituitary

The table shows the origin and relationship of unitages for the different preparations. All preparations were calibrated by in vivo bioassay
in terms of the stated standard except preparations coded 94/632 and 92/510 for use in immunoassays.

a Unless otherwise indicated.
b Preparations no longer available.

10 ROSE, GAINES DAS, AND BALEN Vol. 21, No. 1



isoform composition for the calibration of these assays. Al-
ternatively, standards might be given a unitage based on the
molar content of FSH in the ampoule or in reconstituted
solution. The heterogeneous nature of FSH would necessitate
that such a standard should have a defined isoform compo-
sition and that it can be reproduced for the preparation of
replacement standards. Even with such a standard, discrep-
ancies would arise between immunoassay systems that have
different selectivities based on their epitopic recognition.
Paradoxically, with the advances in preparation and analysis
of therapeutic products, such a standard may also have ap-
plications in calibration of new therapeutics.

VI. Assay Systems Used for Measurement of FSH

Assays for FSH can be classified into a variety of groups
(136). One broad classification might be those that determine
some response of a biological system to stimulation with FSH
(bioassays, both in vivo and in vitro), those that estimate high
affinity binding to molecules which exhibit specific proper-
ties of molecular recognition (immunoassays, receptor as-
says and lectin binding assays), and those that determine
structural features or molecular properties by physicochem-
ical means.

A. Bioassays

1. In vivo bioassays. FSH was originally discovered and there-
fore defined on the basis of its biological action. Early studies
(reviewed in Ref. 21) were confusing and contradictory. The
activities being measured in unfractionated biological fluids
(urine from pregnant and nonpregnant women) had to be
resolved first into activities of placental and pituitary origin
and subsequently into follicle stimulating and luteinizing
activity. A number of different in vivo bioassays, which were
essentially based upon the effects of aqueous extracts of
pituitary, placenta, or urine on the reproductive tracts of
mice and prepubertal rats, were used in the early stages of
discovery of FSH. The initial methodology of Ascheim and
Zondek (137) was based on the biological effect of urine from
pregnant women on the development of the reproductive
tract in mice. Subsequently, increase in uterine weight and
ovarian weight were used as biological endpoints (138). The
assay developed in 1953 by Steelman and Pohley (139) based
on the stimulation of ovarian weight in gonadotropin (LH)-
treated immature rats, has proved to be a robust specific in
vivo bioassay for FSH activity. This assay remains the basis
of pharmacopeial monographs for the statutory determina-
tion of the FSH potency of therapeutic preparations (EP).

The major drawback of this assay is that the daily dosing
regimen may preclude FSH forms that have a short half-life
from exerting a biological effect. Evidence from studies on
rDNA-derived FSH indicates that FSH isoforms with a pI
value greater than about 5.1 exert no biological action in this
assay (140). For most urinary derived preparations this may
have little consequence since FSH produced in menopausal
women is of an acidic nature, but it may be important in
calibrating recombinant forms of FSH and in assigning spe-
cific activities related to protein content.

Acute or short-term in vivo bioassays that have been de-

scribed for LH are the ovarian ascorbic acid depletion test
and the measurement of peripheral testosterone levels (141,
142). When preparations of different molecular composition
are compared with each other in these two assays, different
relative potencies are derived depending upon the assay
type. No equivalent acute in vivo assays have been described
for the determination of FSH. The in vivo effects of synthetic
peptides corresponding to amino acids 34–37 of human FSH
b-subunit have recently been evaluated using several pa-
rameters based on regulation of the estrous cycle (143). This
illustrates other quantifiable FSH-dependent responses
which might form the basis of a relevant bioassay for some
preparations of potential therapeutic value that interfere
with the action of FSH. Other endpoints in an in vivo bioassay
could include the secretion of inhibins that have been related
to subtle changes in FSH levels in women (144) and may
allow an acute response to FSH to be determined.

In vivo biological activity is sometimes considered to be
that which best defines FSH since it has two important com-
ponents: that of biological action at the target tissue and that
of biological clearance (145). However, use of genetic engi-
neering techniques has enabled the modification of gonad-
otropins in terms of their biological activity by substitution
of key amino acid sequences (146–148). The calibration of
these materials as therapeutics will require careful thought.
The current in vivo bioassay may be differently affected by
forms of FSH with extended or shortened biological half-
lives and may only detect some forms of FSH depending
upon how the assay system is designed. Therefore, it might
be necessary to redesign in vivo bioassays or to devise new
assay systems to accommodate differences in activity of dif-
ferent molecular forms of FSH. Novel use of existing units,
which may not reflect different aspects of the activity of some
preparations, will need to be defined clearly to avoid con-
fusion in their clinical usage. Clinicians using such prepa-
rations would need to distinguish between the expected pa-
tient responses to preparations with different properties
calibrated in different ways. A unitage based on mass, al-
though apparently providing a common basis, would not be
appropriate unless combined with a range of physicochem-
ical and/or biological assays since materials with different
half lives exemplify the lack of relationship between mass
and activity. Additionally, new unexpected activities can be
generated (148) that will necessitate careful evaluation of the
full biological potential of any chimeric molecules. If new
materials produced through biotechnology are able to give
significantly improved therapeutic treatments, then such
problems would have to be overcome.

2. In vitro bioassays. A number of in vitro bioassays have been
described (149–162), and this particular subject has been
reviewed (163, 164). In vitro bioassays are largely based upon
a quantifiable cellular response to stimulation with FSH.
Such responses include stimulation of cAMP production
(151), aromatase activity (154), or tissue plasminogen acti-
vator production (161) by Sertoli cells or granulosa cells in
culture (e.g., Refs. 155 and 157). More recent developments
have included the use of cell lines transfected with the gene
for expressing rat (165) or human (166, 167) FSH receptors
and estimates of changes in cell shape or size (168) or cou-
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pling of the gonadotropin receptor to a reporter gene (169).
Recent advances in molecular biology may enable genetically
engineered cell lines of various types to become common
methods for estimating hormone activity (170). In vitro bio-
assays can provide very sensitive methods for estimating the
biological activity of FSH in biological fluids (160) or isolated
FSH isoforms (171). The two major drawbacks are that no
comparisons of biological half-life can be made in such sys-
tems and that usually only one biochemical endpoint is mea-
sured. Furthermore, the systematic designs adopted for
many in vitro assays may lead to biased results. Nevertheless,
in vitro bioassays have proved to be valuable tools in eluci-
dating the physiology of FSH.

B. High-affinity binding assays

1. Immunoassays. Immunoassays are widely used for clinical
determination of FSH for diagnosis and in physiological
studies because they are rapid, readily available, relatively
cheap, and sensitive. Immunoassays are generally consid-
ered to be more precise than in vivo bioassays although, with
the exception of a few documented cases (e.g., Ref. 172), they
are assumed to give no information about biological activity.

Early immunoassays for FSH were based on the RIA for-
mat (173), which gave robust assays that are still in use (174).
However, RIAs have been largely superseded by assays
based on monoclonal antibody technology (175). Most com-
mercially available assays are now based on sandwiches of
monoclonal or monoclonal-polyclonal antibodies with a va-
riety of detection modes and are generally more sensitive and
precise than one-site assays. The latter assays are highly
specific and may exclude some forms of the hormone of
interest (e.g., Ref. 176). Thus, a hormone-specific polyclonal
antibody-based assay that is less selective for hormone iso-
types may be preferred for some purposes.

Although assays of apparently high specificity are com-
mercially available, there is still considerable variability be-
tween the results of different assays for gonadotropins (124,
129–132, 177). The reasons for such variations have been
ascribed to differences in calibration of different assay kits
(130), cross-reactivity between gonadotropin subunits and
nonlinearity between kit standard and internationally avail-
able standards (132), differential recognition of different
samples obtained for example at different stages of the men-
strual cycle (131), and varying dose-response characteristics
between different assay systems (178). Details of the methods
of calibration and sources and composition of kit and in-
house standards are frequently unknown to the user, which
makes evaluation of the standardization of calibration and
hence comparisons between different immunoassay kits dif-
ficult. By comparison, therapeutic products and in-house
standards are calibrated by a common methodology (phar-
macopeial bioassay), and regulatory authorities may test the
potency of products released onto the market to ensure com-
pliance with statutory requirements and consistency.

2. Epitopic structure and molecular recognition. In many cases it
is either not known or not stated what particular epitopes on
the molecules are recognized by different antibodies even
though the overall areas of greatest antigenicity have been

mapped on FSH (179–183) and hCG (184, 185). The methods
used and results of epitopic mapping studies on gonadotro-
pins have been succinctly reviewed (186). Epitopic maps of
gonadotropins have several uses including the identification
of antigenic regions, regions important for bioactivity (e.g.,
for the purposes of designing vaccines), the functional im-
portance of structural features such as the subunit contact
sites (187) and receptor interaction sites (188–190), and the
definition of topology (191).

The main antigenic epitopes of the subunits of FSH have
been identified. Using a panel of 181 monoclonal antibodies,
Berger et al. (186) identified nine antigenic sites; five on the
a-subunit, two on the b-, and two dependent on the con-
formation of the ab-dimer. Dias and co-workers (179, 187,
189–193) have extensively mapped FSH epitopes and the
effects of conformation on these. Although the a-subunits of
the glycoprotein hormones have the same amino acid se-
quences in each of the four hormones, some of the identified
epitopes on the FSH a-subunit (e.g., 3A epitope) are different
between the different glycoprotein hormone heterodimers,
suggesting some flexibility of this epitope, the conformation
of which is affected by binding to the b-subunit (192).

A study of affinities for recognized epitopes has been done
on commercially available immunoassay kits for LH (194)
with some success in identifying the causes of between-assay
variation. Furthermore, standardization of epitopic recogni-
tion perhaps directed at “rigid” epitopes may contribute to
further minimizing between-assay variability. Assay of vari-
able epitopes in a hormone-specific fashion may enable fur-
ther observations on how structural features of hormones
change with different physiological conditions. Antibody
responses to epitopes in the region covered by amino acid
residues 33–53 of the FSH b-subunit have been found to both
enhance (195) and neutralize (196) FSH action. These obser-
vations raise the possibility of new methods with which to
manipulate ovarian function or to produce contraceptive
agents.

Structural features of FSH known to change with different
circumstances are the carbohydrate side chains attached to
the protein backbone. Studies are currently underway to
investigate whether antibody binding is affected by glycan
heterogeneity. The current thinking derived from epitopic
studies is that oligosaccharides do not play a significant role
in antigenic structure of gonadotropins but that removal of
or alteration of the structure of oligosaccharides may alter the
affinity of binding of monoclonal antibodies (197). There are,
however, reports of antibodies that can distinguish between
native and desialyated hCG (198–202), and there may be
some difference in orientation of the a-subunit assessed im-
munologically following chemical deglycosylation (200).
Further evidence for antigenic recognition of oligosaccharide
structures was derived from studies of antibodies raised
against rDNA-derived hCG that contains glycans high in
mannose as a result of the glycosylation produced in the
baculovirus system (201). Direct screening of glycosides re-
leased from glycoproteins shows that some antibodies at
least can recognize specific carbohydrate sequences (202). It
is likely that there are both antibodies whose binding is not
affected by alterations in sugar structure and antibodies
whose binding is affected. For the purposes of defining assay
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specificity, it therefore appears necessary to determine ex-
perimentally whether particular antibodies are affected by
glycan structure.

In addition to differences in epitopic specificity, differ-
ences in antibody affinity, and differences in molecular rec-
ognition, there are other factors that contribute to the het-
erogeneity observed between immunoassay types. These
factors can include assay type such as RIA vs. immunora-
diometric assay or enzyme-linked immunosorbent assay
(ELISA), etc., kinetics of the assay [few commercial assays are
taken to completion (steady state) for the sake of rapid pro-
duction of results], orientation of antibodies in the assay, and
comparisons between different standards. Comparisons be-
tween commercial assay kits would be made easier if epitopic
recognition and other properties of the antibodies, such as
affinity for epitopic sites as well as source and composition
of the kit and in-house standards, were clearly described.

3. Lectin-binding assays. Although the extent to which glycan
structures may influence binding of antibodies to FSH mol-
ecules cannot be generally ascertained, the replacement of a
detector antibody in an ELISA format with a labeled lectin
gives rise to assays that can detect changes in oligosaccharide
structures (203). This methodology is not generally quanti-
tative but has been used to probe qualitative differences
between different preparations of rDNA-derived human
FSH preparations. It has also been used to independently
confirm enzymatic modifications of gonadotropin molecules
but has yet to be developed for application to samples of
serum or pituitary tissue. Lectin-affinity chromatography
(204), in which samples of serum are applied to a lectin
column and eluted in a stepwise fashion with increasing
concentrations of a suitable sugar, results in the identification
of FSH isoforms that are either not bound to the column,
weakly bound, or strongly bound. Gross differences in sugar
structures are thus inferred. In the lectin-ELISA format, ratios
of signals originating from terminal sialic acid, free galactose,
and core structures can be determined and related to ELISA
data for estimating the relative levels of these molecular
structures in the preparation. Either protocol may be a first
step in development of a clinically useful assay that provides
qualitative data on changes in glycan structures on FSH (and
other glycoproteins).

4. Receptor assays. Receptor assays involve the estimation of
the binding of unknown samples to preparations of specific
receptors of either natural or rDNA-derived origin. Early
receptor assays were based upon the solubilized FSH recep-
tor from calf testis (205–207). This has proved to be a robust
assay and remains in use with further developments leading
to a receptor assay that can be used for quantifying FSH in
unextracted serum (208). Variations of the assay utilize intact
cells or cell lines transfected with recombinant receptors. The
inclusion of receptor assays in international collaborative
studies has given rise to results that are relatively consistent
in comparison with in vitro assays. This may result from the
different properties that are determined by these two assay
types (209).

A combination of a (recombinant) receptor and an anti-
body preparation in an ELISA-type format could give rise to

a useful and practical assay that estimates functional as well
as immunologically reactive structural features (210).

5. Summary. Although high-affinity binding assays have pro-
vided much information about FSH, those that do not dis-
criminate between different glycosylation forms of FSH may
not be able to detect variant or antagonist forms of FSH (211).
Analysis of binding kinetics can give results that are different
for intact and deglycosylated FSH (212). These assays may
also be affected by FSH-like molecules (213) or other inhib-
itory materials (214). The physiological basis of such mole-
cules remains to be clarified.

C. Physicochemical assays

In impure preparations such as hMG, it is not possible to
estimate FSH by physicochemical techniques, although in
combination with immunoassays or in vitro bioassays, for
example, the physicochemical properties of FSH molecules
can be explored. The separation of different forms of pitu-
itary or circulating FSH by physicochemical methods, such
as zone electrophoresis with an immunoassay (215), or a
bioassay as the detection method has been described (for a
review see Ref. 216). Such studies show that FSH can change
with different physiological or pathological situations but
have not provided definitive structural information.

The availability of highly purified preparations derived
from rDNA methods has now enabled a wider range of
physicochemical techniques to be applied. The amino acid
sequence and molecular mass (by mass spectrometry) of
separated subunits can now be determined along with pI
values for isolated bands on isoelectric focusing (IEF) gels.
The structures of the glycan moieties and polypeptide chains
can be determined by nuclear magnetic resonance (217, 218),
and in vivo biological activity has been correlated with pro-
tein amount after separation of isoforms by IEF (140). How-
ever, despite all these methods for structural determination,
no one method has been shown to predict biological activity
directly.

Advanced techniques of mass spectrometry have been
applied recently to the analysis of gonadotropins, particu-
larly hCG (219–221). In these studies the heterogeneity de-
rived from carbohydrate modifications resulted in limited
ability to unambiguously identify hCG. After digestion by
trypsin and separation of the various peptides before mass
spectrometry, clearer signals were obtained, which enabled
confirmation of hCG. This approach can be used to identify
unambiguously a purified preparation of hCG for purposes
such as drug enforcement (219) but would not enable quan-
titative determination of therapeutic products. It may, how-
ever, enable qualitative comparisons between different
batches of therapeutic products (221) which could be used to
assure batch-to-batch consistency.

Analysis by high-performance anion-exchange chroma-
tography of glycosyl residues after enzymatic removal from
the polypeptide backbone has been used to derive a hypo-
thetical N-glycan charge value termed Z (222). The overall
charge contributed by terminal sialic acids present on dif-
ferent glycosyl structures was calculated for a number of
glycoproteins and was found to be a highly accurate and
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reproducible measurable characteristic of glycoproteins. In
light of the importance of sialic acid in regulating biological
half-life and hence in in vivo activity, this could prove a useful
step in estimating biological potency of therapeutic proteins
by physicochemical means.

Although a number of advanced physicochemical tech-
niques have been applied to characterize rDNA-derived hor-
mones in detail (223–225), the determination of biological
activity solely by physicochemical means requires further
work.

VII. Interpretation of FSH Measurements

No assay system currently available clearly describes or
estimates all features and actions of FSH. The relative
amount of FSH determined by different assay types will
depend upon the assay type chosen and the standard used.
A major difficulty encountered in estimating FSH is the lack
of clarity of definition of FSH. The concept of biological
specificity associated with structural descriptions of FSH
implies that it is a ’biological recognition’ that defines FSH
(and similar molecules) rather than a purely physicochemical
definition. However, heterogeneity in the polypeptide back-
bone and in the glycosyl residues gives rise to a large number
of isoforms that vary not only in molecular mass and overall
charge but also in biological (and immunological) activity
(potency and type of actions). It is this 2-fold heterogeneity
of FSH that renders it difficult to define: chemically it is not
possible to apply the concepts of purity and amount to an
inherently heterogeneous substance; and biologically there is
no single unique FSH bioactivity. Additionally, the matrix
that contains FSH (e.g., serum, plasma, follicular fluid) usu-
ally obviates any attempt at chemical or physicochemical
analysis and may also interfere with biological assays.

A. Effect of different isoforms in different assay systems

1. In vivo bioassays. It would appear from experimentation
that MCR is related to in vivo bioactivity (226). Those iso-
forms of FSH that are relatively low in sialic acid content, and
are hence relatively basic in nature, have a relatively low
potency in in vivo bioassays (140) due presumably to their
rapid clearance from the circulation. However, there are con-
flicting reports that different isoforms of FSH do not exhibit
differences in clearance (227). Furthermore, while differences
in in vitro bioactivity were not found to be reflected by dif-
ferences in clearance of in vivo bioactivity (228), in vivo bio-
logical activity of LH was found by others (42) to reflect in
vitro biological activity rather than clearance. The reasons for
these discrepancies in the literature are unclear but may be
related to selection of endpoint in the assay (chronic effect vs.
acute effect) and structural details of pituitary and circulating
FSH in relationship to the mechanisms of clearance.

Studies carried out to correlate biological activity with
isoform profile showed (140) that the protein amount, as
determined by laser densitometry of IEF gels, correlated with
bioactivity, as determined by ovarian weight augmentation,
only for those forms of FSH that have a pI of less than 5.1.
An increase in the proportion of protein with a pI of greater
than 5.1 resulted in a decrease in in vivo biological activity.

It is not known whether the same would be true in an acute
or short term in vivo bioassay. The response, if any, that these
basic forms of FSH evoke may be transient and thus may not
contribute to the endpoint determined in the Steelman-
Pohley test. If rDNA-derived forms of FSH are selected for
a relatively short half-life to enable fine tuning of the ovarian
cycle (229), then the format of the in vivo bioassay will need
to be redesigned for calibration of such materials.

2. In vitro bioassays. In vitro bioassays can offer insights by
enabling the biological activity of short-lived species to be
determined and specific cellular responses to be evaluated.
However, variations in assay design and standards can lead
to different interpretations of physiological events. Thus, the
biological signal measured in one in vitro bioassay of FSH
increases in the mid- to late luteal phase, when immunolog-
ically reactive FSH is apparently decreasing (167), and the
biological activity of FSH appears to continue increasing
even when estradiol levels are declining. Other reports have
found an unchanging biological signal (159), an increase in
the early follicular phase (230), and an increase in the mid to
late luteal phase (167). There is strong evidence for specific
effects of different FSH forms, which are produced at dif-
ferent stages of the cycle as proposed by Chappel et al. (231).
Thus, FSH bioactivity rather than amount may be more im-
portant physiologically. Development of in vitro models that
can distinguish between specific actions of FSH, such as
recruitment and growth of follicles or the induction of hor-
monal components of follicular activity or which have mul-
tiple endpoints (75), would broaden our knowledge further.

3. Immunoassays. The effect of isoform composition on im-
munoassay determinations is not resolved. It is claimed that
immunoassays are blind to the carbohydrate content of FSH
and while the antigenic sites of FSH do not appear to involve
oligosaccharides, it is likely that differences in overall charge
resulting from variations in sugar structures could affect
antibody binding (232). Whereas some immunoassay types
may not provide an estimate of bioactive circulating FSH
(232, 233), others have been reported to reflect biological
activity well (172). Certainly there is significant variation in
the estimates of activity of the same preparations of FSH by
immunoassays (124) that has been observed in a recent WHO
international collaborative study (123).

B. Effect of different forms of FSH on FSH determinations

1. Determination of FSH activity by in vivo bioassays and the
relationship between in vivo bioactivity and clinical efficacy. The
potency of therapeutic products is derived from in vivo bio-
assays in terms of in-house standards, which are calibrated
in terms of WHO International Standards. Comparisons in
international collaborative studies suggest that continuity
and consistency of estimates may be obtained by in vivo
bioassay for therapeutic products although the limits of ac-
tivity defined by the pharmacopeia indicate the relative lack
of precision when a limited number of assays are done.
Moreover, although a common standard and a common as-
say method are intended to maintain consistent unitages for
patients irrespective of the source of the material used, this
cannot be guaranteed (Sections VI and VII).
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The biological action of FSH determined in the Steelman-
Pohley assay is ovarian growth against a background of
excess LH/hCG in immature rats. The desired clinical action
in patients is the recruitment and stimulation of a single
follicle or a cohort of follicles and the stimulation of estradiol
production, possibly against a background of low endoge-
nous LH levels.

The advent of therapeutic forms of FSH made from “pure
FSH” derived from rDNA-sources (234) has led to the ap-
plication of physicochemical techniques to FSH analysis (235,
236), to comparative analysis of in vitro and in vivo biological
activity (237–240), and to a plethora of studies in which
recombinant DNA-derived hFSH has been evaluated for tox-
icity (241), comparative pharmacokinetics (242, 243), and
clinical pharmacology (122, 244–247). In many studies uri-
nary and well-characterized recombinant materials have
been compared for efficacy, quality, and safety (e.g., Ref. 248).
Most studies have found little difference between therapeu-
tics derived from different sources. However, there is a sig-
nificant body of data supporting the conclusion that recom-
binant preparations are more clinically efficacious than their
urinary counterparts on a unit-for-unit basis (121, 249). As-
suming that the materials under test in these studies were
calibrated against WHO International Standards raises ques-
tions about the validity of the in vivo bioassay for calibration
of therapeutic products from different sources and about the
relationship of the biological assay of FSH to its clinical
effectiveness and safety. Even when allowed variability be-
tween preparations defined by pharmacopeial monographs
is taken into account (actual potency may be between 80–
125% of the stated potency), it is difficult to explain why a
recombinant DNA-derived material should be more effective
in inducing follicular growth than a highly purified urinary
material.

One explanation is that recombinant DNA-derived FSH,
with a higher content of basic isoforms that do not contribute
to the in vivo bioassay (140), may more closely resemble those
FSH forms produced at midcycle than urinary FSH and may

therefore be more effective at producing the required phys-
iological response (76). It has also been reported that rela-
tively basic isoforms of rDNA-derived FSH are more effec-
tive in stimulating follicular growth in vitro (250).

2. Determination of FSH by immunoassay and clinical diagnosis.
In the diagnosis of clinical conditions the level of biologically
active FSH in the circulation is of importance. However,
diagnostic tests are generally made by immunoassay that
may recognize FSH molecules that are not biologically active.
Conversely, some highly specific assays may discriminate
against some forms of FSH, although this is a matter of
controversy. Some anti-LH antibodies are reported not to
recognize some forms of LH that arise by genetic variation
(251, 252). There are reports of genetic variants of FSH that
have been associated with delayed sexual development and
infertility (253–255) but these are rare and result in drastic
alterations to the FSH molecule rather than to an antigenic
epitope as is the case with the more common LH polymor-
phism. Whether antibody selectivity could compromise di-
agnosis is not clear. Nevertheless the particular selectivity of
any one assay system is seldom known, and it is therefore not
possible to define FSH in terms of immunoreactivity. Since
FSH (and LH) levels and isoform composition change dras-
tically throughout life and through menstrual cycles, clinical
determinations usually require some additional clinical data
such as stage of cycle or repeat measurements to distinguish
between different diagnostic possibilities. A combination of
quantitative and qualitative assays would be a major ad-
vance in clinical utility of gonadotropin determinations.

Other complications of the gonadotropin system that have
been implicated in disorders of reproduction and that may
affect clinical diagnoses based on FSH determinations in-
clude mutations in the FSH receptor and circulating anti-
bodies against FSH (256–258).

In combination with immunoassays, in vitro bioassays
have been used to derive a biological activity- immunological
activity (B:I) ratio. The rationale behind this concept has been

TABLE 4. Summary of examples of assays for FSH and their main uses, advantages, and disadvantages

Assay type Uses and Main advantages Main disadvantages

Bioassays Measure biological activity. Do not necessarily imply any information on
amount of substance; require reference
material that is difficult to define

In vivo assays Useful for calibrating therapeutic products;
take account of biological clearance

Cumbersome, insensitive

In vitro assays Sensitive, specific, high throughput; useful for
measuring physiological samples

Do not take account of biological clearance;
single endpoint often measured; difficult to
standardize

Immunoassays Measure immunoreactivity; useful
diagnostically

Require reference material that is difficult to
define; epitopes often poorly defined

RIA, ELISA, Lectin-ELISA Sensitive and specific with high throughput;
lectin may provide some structural
information

May be too specific; do not necessarily imply
any information about biological activity or
amount

Physicochemical assays
Electrophoresis Chromatography Can be used quantitatively in absolute terms

for some determinations (e.g., protein
concentration)

Require pure samples in large quantities

Mass spectrometry Can be used to characterize structural details
(e.g., identify peptide map for drug testing)

Cannot (yet) infer information about biological
activity; some systems, e.g., mass
spectrometry, very expensive

Chemical analysis
NMR
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critically discussed (259). Unless either the biological activity
or the immunoreactivity of different preparations can be
shown to be constant for each set of assay systems in use, then
the results of such studies will be misleading. Data derived
from international collaborative studies indicate that the B:I
ratio is not a stable parameter. Estimates of activity of dif-
ferent preparations obtained from both in vitro bioassays and
immunoassays were variable, reflecting the different speci-
ficities of the different assay systems. Although B:I ratios may
be misleading, a comparison of the results from receptor
assays, immunoassays, and in vitro bioassays can provide an
indication of changing isoform profile or of factors that in-
terfere in FSH action in some circumstances (205, 206).

VIII. Conclusions

FSH is a heterogeneous hormone that can be defined in
terms of both its molecular structure and its biological func-
tion. The molecular structure of FSH has been largely de-
termined but variation in key structures leads to heteroge-
neity and renders impossible a definition of a single
molecular entity as FSH. Biologically, FSH exerts multiple
effects at its target tissues so that there is no single action that
defines FSH.

Measurements of FSH are made using a variety of methods
(summarized in Table 4), most of which are biological in
nature. However, the interaction of molecular heterogeneity
and biological actions and the difficulty in defining a stan-
dard preparation of the same type as the unknown sample
that is to be measured can lead to uncertainties. This is
particularly true if the characteristics of the standard and the
assay system used are not clearly specified.

The World Health Organization has made available FSH
standards derived from different sources that are represen-
tative of the main sources of bulk materials used in the
preparation of therapeutic products. These international
standards have similar biological actions to one another and
to therapeutic products in the pharmacopeially defined in
vivo bioassay. The use of appropriate standards for calibra-
tion of therapeutic products in the pharmacopeial assay has,
to a large extent, achieved continuity of unitage of thera-
peutic products. However, these standards may be less suit-
able for general use in a range of assays where the interaction
of molecular and biological heterogeneity of FSH may lead
to inconsistent estimates with the “measured amount of
FSH” depending on selection both of the standard and of the
assay system.

As both the molecular structure of FSH and its biological
actions are more clearly characterized, the need for appro-
priate standards for particular assays and purposes may
become apparent. For some highly purified preparations,
physicochemical techniques may become more useful. The
availability of standards of defined isoforms of FSH might
enable determination of the specificity of various immuno-
assays, and this might serve to clarify the meaning of some
of these measurements. The definition of the particular iso-
forms that are of clinical relevance might permit the devel-
opment of assays specific for them, as well as indicating the
types of preparations that might be appropriate as standards.

FSH will continue to be used therapeutically and diag-
nostically in assessing and treating disorders of the repro-
ductive system. Thus, the scientific community should be
aware of the need to specify as far as possible what is meant
by any particular measurement of FSH and, in particular,
should be aware that such measurement is not meaningful
without definition of both the standard and the measuring
method used.
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